I think the former 'test50' had a typo making it functionally equivalent
to the former 'test49'; changed the predicate to provide more coverage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285706 91177308-0d34-0410-b5e6-96231b3b80d8
I wanted to implement this as a target independent expansion, however when
targets say they want to expand FP_TO_FP16 what they actually want is
the unsafe math expansion when possible and expansion to a libcall in all
other cases.
The only way to make this work as a target independent would be to add logic
to target's TargetLowering construction to mark theses nodes as Expand when
LegalizeDAG can use the unsafe expansion and mark them as LibCall when it
cannot. I think this would be possible, but I think it would be too fragile
and complex as it would require targets to keep their expansion logic up
to date with the code in LegalizeDAG.
Reviewers: bogner, ab, t.p.northover, arsenm
Subscribers: wdng, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D25999
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285704 91177308-0d34-0410-b5e6-96231b3b80d8
purpose of the test was to have 2 different function attribute sets, but due
to a typo there was only one both with number #0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285701 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces the combine:
(C1 shift (A add C2)) -> ((C1 shift C2) shift A)
iff A and C2 are both positive
If both A and C2 are know to be positive then we can safely split into 2 shifts, permitting the folding of the Inner shift.
Fix for the spec benchmark case mentioned by @nadav on PR15141 (assuming we can prove that the inputs as positive).
Differential Revision: https://reviews.llvm.org/D26000
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285696 91177308-0d34-0410-b5e6-96231b3b80d8
Note: Test is per differential review, but the other changed code in the review was for an optimisation that din't quite work. Nevertheless, the test is valid for the unoptimised version of the fix.
Differential Review: https://reviews.llvm.org/D24658
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285692 91177308-0d34-0410-b5e6-96231b3b80d8
[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285690 91177308-0d34-0410-b5e6-96231b3b80d8
Generate the slowest possible codepath for noopt CodeGen. Even trying to be
clever with the negated jump can cause out-of-range jumps. Use a wide branch
instead. Although the code is modelled simplistically, the later optimizations
would recombine the branching into `cbz` if possible. This re-enables the
previous optimization as well as hopefully gives us working code in all cases.
Addresses PR30356!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285649 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
There is no point to importing at -O0, since we won't inline. We should
also disable other cross-module optimizations.
(Plan to backport this fix to the 3.9 branch to fix PR30774)
Reviewers: pcc
Subscribers: johanengelen, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25918
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285648 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This has been replaced by the NVPTXInferAddressSpaces pass. We've had
the new one as the default with the old one accessible via a flag for
some months now, and we've had no problems.
Reviewers: tra
Subscribers: llvm-commits, jholewinski, jingyue, mgorny
Differential Revision: https://reviews.llvm.org/D26165
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285642 91177308-0d34-0410-b5e6-96231b3b80d8
the offsets and sizes of an element of the file overlaps with
another element in the Mach-O file.
This shows the approach to this testing for three elements
and contains for tests for their overlap. Checking for all the
remain elements will be added next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285632 91177308-0d34-0410-b5e6-96231b3b80d8
DW_TAG_atomic_type was already included in Dwarf.defs and emitted correctly,
however Verifier didn't recognize it as valid.
Thus we introduce the following changes:
* Make DW_TAG_atomic_type valid tag for IR and DWARF (enabled only with -gdwarf-5)
* Add it to related docs
* Add DebugInfo tests
Differential Revision: https://reviews.llvm.org/D26144
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285624 91177308-0d34-0410-b5e6-96231b3b80d8
On Darwin, simple C null-terminated constant strings normally end up in the __TEXT,__cstring section of the resulting Mach-O binary. When instrumented with ASan, these strings are transformed in a way that they cannot be in __cstring (the linker unifies the content of this section and strips extra NUL bytes, which would break instrumentation), and are put into a generic __const section. This breaks some of the tools that we have: Some tools need to scan all C null-terminated strings in Mach-O binaries, and scanning all the contents of __const has a large performance penalty. This patch instead introduces a special section, __asan_cstring which will now hold the instrumented null-terminated strings.
Differential Revision: https://reviews.llvm.org/D25026
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285619 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes Bug 30808.
Note that passing subtarget information to predicates seems too complicated, so gfx8-specific def smrd_offset_20 introduced.
Old gfx6/7-specific def renamed to smrd_offset_8 for clarity.
Lit tests updated.
Differential Revision: https://reviews.llvm.org/D26085
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285590 91177308-0d34-0410-b5e6-96231b3b80d8
with fix: edited invalid-section-index2.elf input to pass the new check and
fail on the same place it was intended to fail.
Original commit message:
Elf.h already has code checking that section table does not go past end of file.
Problem is that this check may not work on values greater than UINT64_MAX / Header->e_shentsize
because of calculation overflow.
Parch fixes the issue.
Differential revision: https://reviews.llvm.org/D25432
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285586 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two changes:
- Move processor feature definition into a new file SystemZFeatures.td,
and provide explicit lists of supported and unsupported features for
each level of the z/Architecture. This allows specifying unsupported
features in the scheduler definition files for each processor.
- Add optional aliases for the -mcpu processor names according to the
level of the z/Architecture, for compatibility with other compilers
on the platform. The supported aliases are:
-mcpu=arch8 equals -mcpu=z10
-mcpu=arch9 equals -mcpu=z196
-mcpu=arch10 equals -mcpu=zEC12
-mcpu=arch11 equals -mcpu=z13
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285577 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when using an instruction that is not supported on the
currently selected architecture, the LLVM assembler is likely to
diagnose an "invalid operand" instead of a "missing feature".
This is because many operands require a custom parser in order to
be processed correctly, and if an instruction is not available
according to the current feature set, the generated parser code
will also not detect the associated custom operand parsers.
Fixed by temporarily enabling all features while parsing operands.
The missing features will then be correctly detected when actually
parsing the instruction itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285575 91177308-0d34-0410-b5e6-96231b3b80d8
LLVM currently treats the first operand of MVCK as if it were a
regular base+index+displacement address. However, it is in fact
a base+displacement combined with a length register field.
While the two might look syntactically similar, there are two
semantic differences:
- %r0 is a valid length register, even though it cannot be used
as an index register.
- In an expression with just a single register like 0(%rX), the
register is treated as base with normal addresses, while it is
treated as the length register (with an empty base) for MVCK.
Fixed by adding a new operand parser class BDRAddr and reworking
the assembler parser to distinguish between address + length
register operands and regular addresses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285574 91177308-0d34-0410-b5e6-96231b3b80d8
There is a bug describing poor cost model for floating point operations:
Bug 29083 - [X86][SSE] Improve costs for floating point operations. This
patch is the second one in series of patches dealing with cost model.
Differential Revision: https://reviews.llvm.org/D25722
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285564 91177308-0d34-0410-b5e6-96231b3b80d8
In D26098, Davide Italiano submitted a .s file instead of the .ll file
that was the last stage of the review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285559 91177308-0d34-0410-b5e6-96231b3b80d8
possible pointer-wrap-around concerns, in some cases.
Before this patch, collectConstStridedAccesses (part of interleaved-accesses
analysis) called getPtrStride with [Assume=false, ShouldCheckWrap=true] when
examining all candidate pointers. This is too conservative. Instead, this
patch makes collectConstStridedAccesses use an optimistic approach, calling
getPtrStride with [Assume=true, ShouldCheckWrap=false], and then, once the
candidate interleave groups have been formed, revisits the pointer-wrapping
analysis but only where it matters: namely, in groups that have gaps, and where
the gaps are not at the very end of the group (in which case the loop is
peeled). This second time getPtrStride is called with [Assume=false,
ShouldCheckWrap=true], but this could further be improved to using Assume=true,
once we also add the logic to track that we are not going to meet the scev
runtime checks threshold.
Differential Revision: https://reviews.llvm.org/D25276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285517 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When we have an aliasee that is linkonce, while we can't convert
the non-prevailing copies to available_externally, we still need to
convert the prevailing copy to weak. If a reference to the aliasee
is exported, not converting a copy to weak will result in undefined
references when the linkonce is removed in its original module.
Add a new test and update existing tests.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26076
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285512 91177308-0d34-0410-b5e6-96231b3b80d8
Try harder to detect obfuscated min/max patterns: the initial pattern was added with D9352 / rL236202.
There was a bug fix for PR27137 at rL264996, but I think we can do better by folding the corresponding
smax pattern and commuted variants.
The codegen tests demonstrate the effect of ValueTracking on the backend via SelectionDAGBuilder. We
can't expose these differences minimally in IR because we don't have smin/smax intrinsics for IR.
Differential Revision: https://reviews.llvm.org/D26091
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285499 91177308-0d34-0410-b5e6-96231b3b80d8
Currently computeKnownBits returns the common known zero/one bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original computeKnownBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
The approach was found to be easier than trying to add a per-element known bits solution, for a similar usefulness given the combines where computeKnownBits is typically used.
I've only added support for a few opcodes so far (the ones that have proven straightforward to test), all others will default to demanding all elements but can be updated in due course.
DemandedElts support could similarly be added to computeKnownBitsForTargetNode in a future commit.
This looked like this had caused compile time regressions on some buildbots (and was reverted in rL285381), but appears to have just been a harmless bystander!
Differential Revision: https://reviews.llvm.org/D25691
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285494 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Flat instruction can return out of order, so we need always need to wait
for all the outstanding flat operations.
Reviewers: tony-tye, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D25998
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285479 91177308-0d34-0410-b5e6-96231b3b80d8
Also add glc bit to the scalar loads since they exist on VI
and change the caching behavior.
This currently has an assembler bug where the glc bit is incorrectly
accepted on SI/CI which do not have it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285463 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In isel, transform
Num % Den
into
Num - (Num / Den) * Den
if the result of Num / Den is already available.
Reviewers: tra
Subscribers: hfinkel, llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D26090
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285461 91177308-0d34-0410-b5e6-96231b3b80d8