operands.
Hopefully this fixes the llvm-gcc-powerpc-darwin9 buildbot. It really shouldn't
since missing memoperands should not affect correctness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108540 91177308-0d34-0410-b5e6-96231b3b80d8
since it doesn't work for front-ends which don't emit column information
(which includes llvm-gcc in its present configuration), and doesn't
work for clang for K&R style variables where the variables are declared
in a different order from the parameter list.
Instead, make a separate pass through the instructions to collect the
llvm.dbg.declare instructions in order. This ensures that the debug
information for variables is emitted in this order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108538 91177308-0d34-0410-b5e6-96231b3b80d8
pass that inserted it.
It is no longer necessary to limit the live ranges of FP registers to a single
basic block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108536 91177308-0d34-0410-b5e6-96231b3b80d8
FP_REG_KILL instructions are still inserted, but can be disabled by passing
-live-x87 to llc. The X87FPRegKillInserterPass is going to be removed shortly.
CFG edges are partioned into bundles where the x87 stack must be allocated
identically. Code is insertad at the end of each basic block that shuffles the
live FP registers to match the outgoing bundles expectations.
This fix is in preparation for some upcoming register allocator improvements
that may extend the live range of registers beyond a basic block, similar to
LICM. It also provides a nice runtime speedup if you are building with
-mfpmath=387.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108529 91177308-0d34-0410-b5e6-96231b3b80d8
occasions, caused code to be generated in a different order.
All cases I've seen involved float softening in the type
legalizer, and this could be perhaps be fixed there, but
it's better not to generate things differently in the first
place. 7797940 (6/29/2010..7/15/2010).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108484 91177308-0d34-0410-b5e6-96231b3b80d8
it doesn't miss an opportunity to form a GEP, regardless of the
relative loop depths of the operands. This fixes rdar://8197217.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108475 91177308-0d34-0410-b5e6-96231b3b80d8
the function. We'll just turn it into a "trap" instruction instead.
The problem with not handling this is that it might generate a prologue without
the equivalent epilogue to go with it:
$ cat t.ll
define void @foo() {
entry:
unreachable
}
$ llc -o - t.ll -relocation-model=pic -disable-fp-elim -unwind-tables
.section __TEXT,__text,regular,pure_instructions
.globl _foo
.align 4, 0x90
_foo: ## @foo
Leh_func_begin0:
## BB#0: ## %entry
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
...
The unwind tables then have bad data in them causing all sorts of problems.
Fixes <rdar://problem/8096481>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108473 91177308-0d34-0410-b5e6-96231b3b80d8
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108465 91177308-0d34-0410-b5e6-96231b3b80d8
to keep "Text" in sync with the "pure instructions" section attribute.
Lack of this attribute was preventing the assembler from emitting
multibyte noops instructions for templates (and inlines, and other
coalesced stuff) and was causing the assembler to mismatch .o files.
This fixes rdar://8018335
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108461 91177308-0d34-0410-b5e6-96231b3b80d8
different widths. In a use with a narrower fixup, formulae
may be wider than the fixup, in which case the high bits
aren't necessarily meaningful, so it isn't safe to reuse
them for uses with wider fixups.
This fixes PR7618, though the testcase is too large for a
reasonable regression test, since it heavily dependes on
hitting LSR's heuristics in a certain way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108455 91177308-0d34-0410-b5e6-96231b3b80d8
this fixes rdar://8192860. Unfortunately it can only be triggered
with llc because llvm-mc matches another (correctly encoded) version
of this, so no testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108454 91177308-0d34-0410-b5e6-96231b3b80d8
the corresponding or-icmp-and pattern. This has the added benefit of doing
the matching earlier, and thus being less susceptible to being confused by
earlier transforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108429 91177308-0d34-0410-b5e6-96231b3b80d8
a zero. This situation arrises in Fortran code with induction variables
that start at 1 instead of 0. This fixes PR7651.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108424 91177308-0d34-0410-b5e6-96231b3b80d8
mutated by recursive simplification. This also enhances
ReplaceAndSimplifyAllUses to actually do a real RAUW
at the end of it, which updates any value handles
pointing to "From" to start pointing to "To". This
seems useful for debug info and random other VH users.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108415 91177308-0d34-0410-b5e6-96231b3b80d8
it *changing* the things it replaces, not just causing them
to drop to null. There is no functionality change yet, but
this is required for a subsequent patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108414 91177308-0d34-0410-b5e6-96231b3b80d8
instructions use different values (e.g., 2-byte or 4-byte alignment).
Also fix ARMInstPrinter to print these alignments as bits instead of bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108386 91177308-0d34-0410-b5e6-96231b3b80d8
lowering atomics. This will allow those copies to still be coalesced after
TII::isMoveInstr is removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108385 91177308-0d34-0410-b5e6-96231b3b80d8
independent of the order that isel happens to visit the dbg_declare
intrinsics. This fixes a bug in which the formal arguments were
being printed in reverse order, now that fast isel is going bottom up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108369 91177308-0d34-0410-b5e6-96231b3b80d8
"bonus" instruction to be speculatively executed. Add a heuristic to
ensure we're not tripping up out-of-order execution by checking that this bonus
instruction only uses values that were already guaranteed to be available.
This allows us to eliminate the short circuit in (x&1)&&(x&2).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108351 91177308-0d34-0410-b5e6-96231b3b80d8
in the literal field of an instruction. E.g.,
long long foo(long long a) {
return a - 734439407618LL;
}
rdar://7038284
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108339 91177308-0d34-0410-b5e6-96231b3b80d8
address cannot be allocated a register is in 32-bit mode where the first
three arguments are marked inreg. In that case EAX, EDX, and ECX will be
used for argument passing.
This fixes PR7610.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108327 91177308-0d34-0410-b5e6-96231b3b80d8
constants, since they may not be emited near the other instructions
which get the same line, and this confuses debug info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108302 91177308-0d34-0410-b5e6-96231b3b80d8
LiveInterval::overlapsFrom dereferences end() if it is called on an empty
interval.
It would be reasonable to just return false - an empty interval doesn't overlap
anything, but I want to know who is doing it first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108264 91177308-0d34-0410-b5e6-96231b3b80d8
by a return that returns a constant, while elsewhere in the function
another return instruction returns a different constant. This is a
special case of accumulator recursion, so just generalize the existing
logic a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108241 91177308-0d34-0410-b5e6-96231b3b80d8
with this commit the callee moves to the end of
the operand array (from the start) and the call
arguments now start at index 0 (formerly 1)
this ordering is now consistent with InvokeInst
this commit only flips the switch,
functionally it is equivalent to
r101465
I intend to commit several cleanups after a few
days of soak period
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108240 91177308-0d34-0410-b5e6-96231b3b80d8
they already have one.
This fixes the himenobmtxpa miscompilation on ARM.
The PostRA scheduler got confused by the double memoperand and hoisted a stack
slot load above a store to the same slot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108219 91177308-0d34-0410-b5e6-96231b3b80d8
utility classes can be used from multiple files. This will aid
transitioning to a new refactored x86 SIMD specification.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108213 91177308-0d34-0410-b5e6-96231b3b80d8
instructions already have implicit defs of LR. The comment suggests that
this is intended to fix something like pr6111, but it doesn't really do
that either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108186 91177308-0d34-0410-b5e6-96231b3b80d8
- Currently initialization is a bit of a hack, but harmless. We need to rework
various parts of target initialization to clean this up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108165 91177308-0d34-0410-b5e6-96231b3b80d8
that was actually useful here.
Chris, please double check that this is the correct interpretation. I was
pretty sure, and ran it by Nick as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108129 91177308-0d34-0410-b5e6-96231b3b80d8
AggressiveAntiDepBreaker should not be using getPhysicalRegisterRegClass. An
instruction might be using a register that can only be replaced with one from
a subclass of getPhysicalRegisterRegClass.
With this patch we use getMinimalPhysRegClass. This is correct, but
conservative. We should check the uses of the register and select the
largest register class that can be used in all of them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108122 91177308-0d34-0410-b5e6-96231b3b80d8
physical register can be allocated in the class of the virtual are sufficient.
I think that the test for virtual registers is more strict than it needs to be,
it should be possible to coalesce two virtual registers the class of one
is a subclass of the other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108118 91177308-0d34-0410-b5e6-96231b3b80d8
getMinimalPhysRegClass. It was used to produce spills, and it is better to
use the most specific class if possible.
Update getLoadStoreRegOpcode to handle GR32_AD.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108115 91177308-0d34-0410-b5e6-96231b3b80d8
the LHS and RHS of an and/or instruction, don't multiply add
known predecessor values. This fixes the crash on testcase
from PR7498
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108114 91177308-0d34-0410-b5e6-96231b3b80d8
The only folding these load/store architectures can do is converting COPY into a
load or store, and the target independent part of foldMemoryOperand already
knows how to do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108099 91177308-0d34-0410-b5e6-96231b3b80d8
We are generating movaps for all XMM register copies, including scalar
floating point values. This is known to be at least as good as movss and movsd
for all known architectures up to and including Nehalem because it avoids a
partial register stall.
The SSEDomainFix pass will switch movaps to movdqa when appropriate (i.e., when
operands come from the integer unit). We don't now that switching movaps to
movapd has any benefit.
The same applies to andps -> pand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108096 91177308-0d34-0410-b5e6-96231b3b80d8
Targets must now implement TargetInstrInfo::copyPhysReg instead. There is no
longer a default implementation forwarding to copyRegToReg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108095 91177308-0d34-0410-b5e6-96231b3b80d8
The first one was used just to call isSafeToMoveRegClassDefs. In
general, using a more specific reg class is better, in practice only
x86 implements that method and the results are always the same.
The second one is in FindFreeRegister and is used to check if a register
is in a register class, a much more direct call to contains is better as
it should cover more cases and is faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108093 91177308-0d34-0410-b5e6-96231b3b80d8
assert()s, switching to void-casts. Removed an unneeded Compiler.h include as
a result. There are two other uses in LLVM, but they're not due to assert()s,
so I've left them alone.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108088 91177308-0d34-0410-b5e6-96231b3b80d8
Don't try a cross-class copy. That is very unlikely anywy since return value
registers are usually register class friendly. (%EAX, %XMM0, etc).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108074 91177308-0d34-0410-b5e6-96231b3b80d8
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108072 91177308-0d34-0410-b5e6-96231b3b80d8
The remaining copyRegToReg calls actually check the return value (shock!), so we
cannot trivially replace them with COPY instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108069 91177308-0d34-0410-b5e6-96231b3b80d8