Summary:
Sandy Bridge and later CPUs have better throughput using a SHLD to implement rotate versus the normal rotate instructions. Additionally it saves one uop and avoids a partial flag update dependency.
This patch implements this change on any Sandy Bridge or later processor without BMI2 instructions. With BMI2 we will use RORX as we currently do.
Reviewers: zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30181
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295697 91177308-0d34-0410-b5e6-96231b3b80d8
We only implemented it for one of the 3 HLE instructions and that instruction is also under the RTM flag. Clang only implements the RTM flag from its command line.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294562 91177308-0d34-0410-b5e6-96231b3b80d8
This patch does the following.
1. Adds an Intrinsic int_x86_clzero which works with __builtin_ia32_clzero
2. Identifies clzero feature using cpuid info. (Function:8000_0008, Checks if EBX[0]=1)
3. Adds the clzero feature under znver1 architecture.
4. The custom inserter is added in Lowering.
5. A testcase is added to check the intrinsic.
6. The clzero instruction is added to assembler test.
Patch by Ganesh Gopalasubramanian with a couple formatting tweaks, a disassembler test, and using update_llc_test.py from me.
Differential revision: https://reviews.llvm.org/D29385
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294558 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Attaching !absolute_symbol to a global variable does two things:
1) Marks it as an absolute symbol reference.
2) Specifies the value range of that symbol's address.
Teach the X86 backend to allow absolute symbols to appear in place of
immediates by extending the relocImm and mov64imm32 matchers. Start using
relocImm in more places where it is legal.
As previously proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/105800.html
Differential Revision: https://reviews.llvm.org/D25878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289087 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Prefer expansions such as: pmullw,pmulhw,unpacklwd,unpackhwd over pmulld.
On Silvermont [source: Optimization Reference Manual]:
PMULLD has a throughput of 1/11 [instruction/cycles].
PMULHUW/PMULHW/PMULLW have a throughput of 1/2 [instruction/cycles].
Fixes pr31202.
Analysis of this issue was done by Fahana Aleen.
Reviewers: wmi, delena, mkuper
Subscribers: RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D27203
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288844 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add basic functionality to support call lowering for X86.
Currently only supports functions which return void and take zero arguments.
Inspired by commit 286573.
Reviewers: ab, qcolombet, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26593
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286935 91177308-0d34-0410-b5e6-96231b3b80d8
This change adds transformations such as:
zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
To:
srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
This optimisation is beneficial on Jaguar architecture only, where lzcnt has a good reciprocal throughput.
Other architectures such as Intel's Haswell/Broadwell or AMD's Bulldozer/PileDriver do not benefit from it.
For this reason the change also adds a "HasFastLZCNT" feature which gets enabled for Jaguar.
Differential Revision: https://reviews.llvm.org/D23446
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284248 91177308-0d34-0410-b5e6-96231b3b80d8
On modern Intel processors hardware SQRT in many cases is faster than RSQRT
followed by Newton-Raphson refinement. The patch introduces a simple heuristic
to choose between hardware SQRT instruction and Newton-Raphson software
estimation.
The patch treats scalars and vectors differently. The heuristic is that for
scalars the compiler should optimize for latency while for vectors it should
optimize for throughput. It is based on the assumption that throughput bound
code is likely to be vectorized.
Basically, the patch disables scalar NR for big cores and disables NR completely
for Skylake. Firstly, scalar SQRT has shorter latency than NR code in big cores.
Secondly, vector SQRT has been greatly improved in Skylake and has better
throughput compared to NR.
Differential Revision: https://reviews.llvm.org/D21379
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277725 91177308-0d34-0410-b5e6-96231b3b80d8
The main difference is that StubDynamicNoPIC is gone. The
dynamic-no-pic mode as the name implies is simply not pic. It is just
conservative about what it assumes to be dso local.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273222 91177308-0d34-0410-b5e6-96231b3b80d8
We performed a number of memory allocations each time getTTI was called,
remove them by using SmallString.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270246 91177308-0d34-0410-b5e6-96231b3b80d8
This refactors the logic in X86 to avoid code duplication. It also
splits it in two steps: it first decides if a symbol is local to the DSO
and then uses that information to decide how to access it.
The first part is implemented by shouldAssumeDSOLocal. It is not in any
way specific to X86. In a followup patch I intend to move it to
somewhere common and reused it in other backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270209 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
MONITORX/MWAITX instructions provide similar capability to the MONITOR/MWAIT
pair while adding a timer function, such that another termination of the MWAITX
instruction occurs when the timer expires. The presence of the MONITORX and
MWAITX instructions is indicated by CPUID 8000_0001, ECX, bit 29.
The MONITORX and MWAITX instructions are intercepted by the same bits that
intercept MONITOR and MWAIT. MONITORX instruction establishes a range to be
monitored. MWAITX instruction causes the processor to stop instruction execution
and enter an implementation-dependent optimized state until occurrence of a
class of events.
Opcode of MONITORX instruction is "0F 01 FA". Opcode of MWAITX instruction is
"0F 01 FB". These opcode information is used in adding tests for the
disassembler.
These instructions are enabled for AMD's bdver4 architecture.
Patch by Ganesh Gopalasubramanian!
Reviewers: echristo, craig.topper, RKSimon
Subscribers: RKSimon, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19795
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269911 91177308-0d34-0410-b5e6-96231b3b80d8
Since r207518 they are printed exactly like non-hidden stubs on x86 and
since r207517 on ARM.
This means we can use a single set for all stubs in those platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269776 91177308-0d34-0410-b5e6-96231b3b80d8
Both Linux and kFreeBSD use glibc, so follow similiar code paths.
Add isTargetGlibc to check for this, and use it instead of isTargetLinux
in a few places.
Fixes PR22248 for kFreeBSD.
Differential Revision: http://reviews.llvm.org/D19104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268624 91177308-0d34-0410-b5e6-96231b3b80d8
Changes in X86.td:
I set features of Intel processors in incremental form: IVB = SNB + X HSW = IVB + X ..
I added Skylake client processor and defined it's features
FeatureADX was missing on KNL
Added some new features to appropriate processors SMAP, IFMA, PREFETCHWT1, VMFUNC and others
Differential Revision: http://reviews.llvm.org/D16357
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258659 91177308-0d34-0410-b5e6-96231b3b80d8
The feature flag is for VPERMB,VPERMI2B,VPERMT2B and VPMULTISHIFTQB instructions.
More about the instruction can be found in:
hattps://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
Differential Revision: http://reviews.llvm.org/D16190
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258012 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are not supported by all CPUs in 64-bit mode. Emitting them
causes Chromium to crash on start-up for users with such chips.
(GCC puts these instructions behind -msahf on 64-bit for the same reason.)
This patch adds FeatureLAHFSAHF, enables it by default for 32-bit targets
and modern CPUs, and changes X86InstrInfo::copyPhysReg back to the lowering
from before r244503 when the instructions are not available.
Differential Revision: http://reviews.llvm.org/D15240
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254793 91177308-0d34-0410-b5e6-96231b3b80d8
its own variable.
This is needed so that we can explicitly turn off MMX without turning
off SSE and also so that we can diagnose feature set incompatibilities
that involve MMX without SSE.
Rationale:
// sse3
__m128d test_mm_addsub_pd(__m128d A, __m128d B) {
return _mm_addsub_pd(A, B);
}
// mmx
void shift(__m64 a, __m64 b, int c) {
_mm_slli_pi16(a, c);
_mm_slli_pi32(a, c);
_mm_slli_si64(a, c);
_mm_srli_pi16(a, c);
_mm_srli_pi32(a, c);
_mm_srli_si64(a, c);
_mm_srai_pi16(a, c);
_mm_srai_pi32(a, c);
}
clang -msse3 -mno-mmx file.c -c
For this code we should be able to explicitly turn off MMX
without affecting the compilation of the SSE3 function and then
diagnose and error on compiling the MMX function.
This matches the existing gcc behavior and follows the spirit of
the SSE/MMX separation in llvm where we can (and do) turn off
MMX code generation except in the presence of intrinsics.
Updated a couple of tests, but primarily tested with a couple of tests
for turning on only mmx and only sse.
This is paired with a patch to clang to take advantage of this behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249731 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247692 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247683 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-on from the discussion in http://reviews.llvm.org/D12154.
This change allows memset/memcpy to use SSE or AVX memory accesses for any chip that has
generally fast unaligned memory ops.
A motivating use case for this change is a clang invocation that doesn't explicitly set
the CPU, but does target a feature that we know only exists on a CPU that supports fast
unaligned memops. For example:
$ clang -O1 foo.c -mavx
This resolves a difference in lowering noted in PR24449:
https://llvm.org/bugs/show_bug.cgi?id=24449
Before this patch, we used different store types depending on whether the example can be
lowered as a memset or not.
Differential Revision: http://reviews.llvm.org/D12288
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245950 91177308-0d34-0410-b5e6-96231b3b80d8
This is a 'no functional change intended' patch. It removes one FIXME, but adds several more.
Motivation: the FeatureFastUAMem attribute may be too general. It is used to determine if any
sized misaligned memory access under 32-bytes is 'fast'. From the added FIXME comments, however,
you can see that we're not consistent about this. Changing the name of the attribute makes it
clearer to see the logic holes.
Changing this to a 'slow' attribute also means we don't have to add an explicit 'fast' attribute
to new chips; fast unaligned accesses have been standard for several generations of CPUs now.
Differential Revision: http://reviews.llvm.org/D12154
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245729 91177308-0d34-0410-b5e6-96231b3b80d8
Remove all calls to `MCSubtargetInfo::InitCPUSched()` and merge its body
into the only relevant caller, `MCSubtargetInfo::InitMCProcessorInfo()`.
We were only calling the former after explicitly calling the latter with
the same CPU; it's confusing to have both methods exposed.
Besides a minor (surely unmeasurable) speedup in ARM and X86 from
avoiding running the logic twice, no functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241956 91177308-0d34-0410-b5e6-96231b3b80d8