NFCI.
Summary:
This is ground work for the changes to enable coercion in NewGVN.
GVN doesn't care if they end up constant because it eliminates as it goes.
NewGVN cares.
IRBuilder and ConstantFolder deliberately present the same interface,
so we use this to our advantage to templatize our functions to make
them either constant only or not.
Reviewers: davide
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30928
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298262 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
iterateOnFunction creates a ReversePostOrderTraversal object which does a post order traversal in its constructor and stores the results in an internal vector. Iteration over it just reads from the internal vector in reverse order.
The GVN code seems to be unaware of this and iterates over ReversePostOrderTraversal object and makes a copy of the vector into a local vector. (I think at one point in time we used a DFS here instead which would have required the local vector).
The net affect of this is that we have two vectors containing the basic block list. As I didn't want to expose the implementation detail of ReversePostOrderTraversal's constructor to GVN, I've changed the code to do an explicit post order traversal storing into the local vector and then reverse iterate over that.
I've also removed the reserve(256) since the ReversePostOrderTraversal wasn't doing that. I can add it back if we thinks it important. Though it seemed weird that it wasn't based on the size of the function.
Reviewers: davide, anemet, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31084
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298191 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
These are the functions used to determine when values of loads can be
extracted from stores, etc, and to perform the necessary insertions to
do this. There are no changes to the functions themselves except
reformatting, and one case where memdep was informed of a removed load
(which was pushed into the caller).
Reviewers: davide
Subscribers: mgorny, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30478
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297438 91177308-0d34-0410-b5e6-96231b3b80d8
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293359 91177308-0d34-0410-b5e6-96231b3b80d8
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289756 91177308-0d34-0410-b5e6-96231b3b80d8
In the case of a fully redundant load LI dominated by an equivalent load V, GVN
should always preserve the original debug location of V. Otherwise, we risk to
introduce an incorrect stepping.
If V has debug info, then clearly it should not be modified. If V has a null
debugloc, then it is still potentially incorrect to propagate LI's debugloc
because LI may not post-dominate V.
Differential Revision: https://reviews.llvm.org/D27468
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288903 91177308-0d34-0410-b5e6-96231b3b80d8
If LoopInfo is available during GVN, BasicAA will use it. However
MergeBlockIntoPredecessor does not update LI as it merges blocks.
This didn't use to cause problems because LI was freed before
GVN/BasicAA. Now with OptimizationRemarkEmitter, the lifetime of LI is
extended so LI needs to be kept up-to-date during GVN.
Differential Revision: https://reviews.llvm.org/D27288
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288307 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r288046.
Trying to see if the revert fixes a compiler crash during a stage2 LTO
build with a GVN backtrace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288179 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r288047.
Trying to see if the revert fixes a compiler crash during a stage2 LTO
build with a GVN backtrace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288178 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r288090.
Trying to see if the revert fixes a compiler crash during a stage2 LTO
build with a GVN backtrace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288177 91177308-0d34-0410-b5e6-96231b3b80d8
There's no agreement about this patch. I personally find the
PRE machinery of the current GVN hard enough to reason about
that I'm not sure I'll try to land this again, instead of working
on the rewrite).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284796 91177308-0d34-0410-b5e6-96231b3b80d8
In theory this could be generalized to move anything where
we prove the operands are available, but that would require
rewriting PRE. As NewGVN will hopefully come soon, and we're
trying to rewrite PRE in terms of NewGVN+MemorySSA, it's probably
not worth spending too much time on it. Fix provided by
Daniel Berlin!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284311 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor replaceDominatedUsesWith to have a flag to control whether to replace uses in BB itself.
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280949 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This is in preparation for LoopSink pass which calls replaceDominatedUsesWith to update after sinking.
Reviewers: chandlerc, davidxl, danielcdh
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24170
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280427 91177308-0d34-0410-b5e6-96231b3b80d8
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278077 91177308-0d34-0410-b5e6-96231b3b80d8
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277099 91177308-0d34-0410-b5e6-96231b3b80d8
r273711 was reverted by r273743. The inliner needs to know about any
call sites in the inlined function. These were obscured if we replaced
a call to undef with an undef but kept the call around.
This fixes PR28298.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273753 91177308-0d34-0410-b5e6-96231b3b80d8
We cannot remove an instruction with no uses just because
SimplifyInstruction succeeds. It may have side effects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273711 91177308-0d34-0410-b5e6-96231b3b80d8
Again, fairly simple. Only change is ensuring that we actually copy the property of the load correctly. The aliasing legality constraints were already handled by the FRE patches. There's nothing special about unorder atomics from the perspective of the PRE algorithm itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268804 91177308-0d34-0410-b5e6-96231b3b80d8
You'll note there are essentially no code changes here. Cross block FRE heavily reuses code from the block local FRE. All of the tricky parts were done as part of the previous patch and the refactoring that removed the original code duplication.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268775 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is the first in a small series teaching GVN to optimize unordered loads aggressively. This change just handles block local FRE because that's the simplest thing which lets me test MDA, and the AvailableValue pieces. Somewhat suprisingly, MDA appears fine and only a couple of small changes are needed in GVN.
Once this is in, I'll tackle non-local FRE and PRE. The former looks like a natural extension of this, the later will require a couple of minor changes.
Differential Revision: http://reviews.llvm.org/D19440
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268770 91177308-0d34-0410-b5e6-96231b3b80d8
We assumed that flags were only present on binary operators. This is
not true, they may also be present on calls and fcmps.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267113 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.
The bisection is enabled using a new command line option (-opt-bisect-limit). Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit. A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.
The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check. Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute. A new function call has been added for module and SCC passes that behaves in a similar way.
Differential Revision: http://reviews.llvm.org/D19172
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267022 91177308-0d34-0410-b5e6-96231b3b80d8