The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.
The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.
Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.
Differential Revision: https://reviews.llvm.org/D30333
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298799 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces guard based loop predication optimization. The new LoopPredication pass tries to convert loop variant range checks to loop invariant by widening checks across loop iterations. For example, it will convert
for (i = 0; i < n; i++) {
guard(i < len);
...
}
to
for (i = 0; i < n; i++) {
guard(n - 1 < len);
...
}
After this transformation the condition of the guard is loop invariant, so loop-unswitch can later unswitch the loop by this condition which basically predicates the loop by the widened condition:
if (n - 1 < len)
for (i = 0; i < n; i++) {
...
}
else
deoptimize
This patch relies on an NFC change to make ScalarEvolution::isMonotonicPredicate public (revision 293062).
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D29034
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293064 91177308-0d34-0410-b5e6-96231b3b80d8
The code have been developed by Daniel Berlin over the years, and
the new implementation goal is that of addressing shortcomings of
the current GVN infrastructure, i.e. long compile time for large
testcases, lack of phi predication, no load/store value numbering
etc...
The current code just implements the "core" GVN algorithm, although
other pieces (load coercion, phi handling, predicate system) are
already implemented in a branch out of tree. Once the core is stable,
we'll start adding pieces on top of the base framework.
The test currently living in test/Transform/NewGVN are a copy
of the ones in GVN, with proper `XFAIL` (missing features in NewGVN).
A flag will be added in a future commit to enable NewGVN, so that
interested parties can exercise this code easily.
Differential Revision: https://reviews.llvm.org/D26224
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290346 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: LICM may hoist instructions to preheader speculatively. Before code generation, we need to sink down the hoisted instructions inside to loop if it's beneficial. This pass is a reverse of LICM: looking at instructions in preheader and sinks the instruction to basic blocks inside the loop body if basic block frequency is smaller than the preheader frequency.
Reviewers: hfinkel, davidxl, chandlerc
Subscribers: anna, modocache, mgorny, beanz, reames, dberlin, chandlerc, mcrosier, junbuml, sanjoy, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D22778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285308 91177308-0d34-0410-b5e6-96231b3b80d8
Previous change broke the C API for creating an EarlyCSE pass w/
MemorySSA by adding a bool parameter to control whether MemorySSA was
used or not. This broke the OCaml bindings. Instead, change the old C
API entry point back and add a new one to request an EarlyCSE pass with
MemorySSA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280379 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Use MemorySSA, if requested, to do less conservative memory dependency
checking.
This change doesn't enable the MemorySSA enhanced EarlyCSE in the
default pipelines, so should be NFC.
Reviewers: dberlin, sanjoy, reames, majnemer
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19821
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280279 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Refactor the existing support into a LoopDataPrefetch implementation
class and a LoopDataPrefetchLegacyPass class that invokes it.
Add a new LoopDataPrefetchPass for the new pass manager that utilizes
the LoopDataPrefetch implementation class.
Reviewers: mehdi_amini
Subscribers: sanjoy, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23483
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278591 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The direct motivation for the port is to ensure that the OptRemarkEmitter
tests work with the new PM.
This remains a function pass because we not only create multiple loops
but could also version the original loop.
In the test I need to invoke opt
with -passes='require<aa>,loop-distribute'. LoopDistribute does not
directly depend on AA however LAA does. LAA uses getCachedResult so
I *think* we need manually pull in 'aa'.
Reviewers: davidxl, silvas
Subscribers: sanjoy, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22437
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275811 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Convert LoopInstSimplify to new PM. Unfortunately there is no exisiting unittest for this pass.
Reviewers: davidxl, silvas
Subscribers: silvas, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D22280
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275576 91177308-0d34-0410-b5e6-96231b3b80d8
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.
Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.
Differential Revision: http://reviews.llvm.org/D19338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275561 91177308-0d34-0410-b5e6-96231b3b80d8
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.
Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.
Differential Revision: http://reviews.llvm.org/D19338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275401 91177308-0d34-0410-b5e6-96231b3b80d8
This pass hoists duplicated computations in the program. The primary goal of
gvn-hoist is to reduce the size of functions before inline heuristics to reduce
the total cost of function inlining.
Pass written by Sebastian Pop, Aditya Kumar, Xiaoyu Hu, and Brian Rzycki.
Important algorithmic contributions by Daniel Berlin under the form of reviews.
Differential Revision: http://reviews.llvm.org/D19338
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274305 91177308-0d34-0410-b5e6-96231b3b80d8
Daniel Berlin expressed some real concerns about the port and proposed
and alternative approach. I'll revert this for now while working on a
new patch, which I hope to put up for review shortly. Sorry for the churn.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272925 91177308-0d34-0410-b5e6-96231b3b80d8
Nearly all the changes to this pass have been done while maintaining and
updating other parts of LLVM. LLVM has had another pass, SROA, which
has superseded ScalarReplAggregates for quite some time.
Differential Revision: http://reviews.llvm.org/D21316
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272737 91177308-0d34-0410-b5e6-96231b3b80d8
The need for all these Lookup* functions is just because of calls to
getAnalysis inside methods (i.e. not at the top level) of the
runOnFunction method. They should be straightforward to clean up when
the old PM is gone.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272615 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Implement guard widening in LLVM. Description from GuardWidening.cpp:
The semantics of the `@llvm.experimental.guard` intrinsic lets LLVM
transform it so that it fails more often that it did before the
transform. This optimization is called "widening" and can be used hoist
and common runtime checks in situations like these:
```
%cmp0 = 7 u< Length
call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
call @unknown_side_effects()
%cmp1 = 9 u< Length
call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
...
```
to
```
%cmp0 = 9 u< Length
call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
call @unknown_side_effects()
...
```
If `%cmp0` is false, `@llvm.experimental.guard` will "deoptimize" back
to a generic implementation of the same function, which will have the
correct semantics from that point onward. It is always _legal_ to
deoptimize (so replacing `%cmp0` with false is "correct"), though it may
not always be profitable to do so.
NB! This pass is a work in progress. It hasn't been tuned to be
"production ready" yet. It is known to have quadriatic running time and
will not scale to large numbers of guards
Reviewers: reames, atrick, bogner, apilipenko, nlewycky
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20143
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269997 91177308-0d34-0410-b5e6-96231b3b80d8
Also add a very basic test, since apparently there aren't any tests
for DCE whatsoever to add the new pass version to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267196 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@264976 91177308-0d34-0410-b5e6-96231b3b80d8
tests to run GVN in both modes.
This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.
Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.
I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.
Differential Revision: http://reviews.llvm.org/D18019
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263208 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Since this is an IR pass it's nice to be able to write tests without
llc. This is the counterpart of the llc test under
CodeGen/PowerPC/loop-data-prefetch.ll.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17464
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261578 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.
Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.
The pass is off by default and can be enabled with command line option
-enable-loop-versioning-licm.
Reviewers: hfinkel, anemet, chatur01, reames
Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
llvm-commits
Differential Revision: http://reviews.llvm.org/D9151
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259986 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LoopVersioning is a transform utility that transform passes can use to
run-time disambiguate may-aliasing accesses. I'd like to also expose as
pass to allow it to be unit-tested.
I am planning to add support for non-aliasing annotation in
LoopVersioning and I'd like to be able to write tests directly using
this pass.
(After that feature is done, the pass could also be used to look for
optimization opportunities that are hidden behind incomplete alias
information at compile time.)
The pass drives LoopVersioning in its default way which is to fully
disambiguate may-aliasing accesses no matter how many checks are
required.
Reviewers: hfinkel, ashutosh.nema, sbaranga
Subscribers: zzheng, mssimpso, llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D16612
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@259610 91177308-0d34-0410-b5e6-96231b3b80d8