Summary:
We should check if loop size allows us to peel at least one iteration
before we do so.
Patch by Max Kazantsev!
Reviewers: sanjoy, mkuper, efriedma
Reviewed By: mkuper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30632
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297122 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: We do not need that special handling because the debug info is more accurate now. Performance testing shows no regression on google internal benchmarks.
Reviewers: davidxl, aprantl
Reviewed By: aprantl
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D30658
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297038 91177308-0d34-0410-b5e6-96231b3b80d8
LoopInfo::getLoopFor returns nullptr if a BB is not in a loop and only
then can the loop be updated to contain the newly created BBs. Add the
missing nullptr check to SplitBlockAndInsertIfThen.
Within LLVM, the only user of this function that also passes a LoopInfo
to be updated is InnerLoopVectorizer::predicateInstructions().
As the method's name implies, the BB operataten on will always be within
a loop, but out-of-tree users may also use it differently (here: Polly).
All other uses of LoopInfo::getLoopFor in the file properly check its
return value for nullptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297016 91177308-0d34-0410-b5e6-96231b3b80d8
Any unsuccessful llvm.type.checked.load devirtualizations will be translated
into uses of llvm.type.test, so we need to add the resulting llvm.type.test
intrinsics to the function summaries so that the LowerTypeTests pass will
export them.
Differential Revision: https://reviews.llvm.org/D29808
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296939 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a loop contains a Phi node which has an invariant input from back
edge, it is profitable to peel such loops (rather than unroll them) to
use the advantage that this Phi is always invariant starting from 2nd
iteration. After the 1st iteration is peeled, other optimizations can
potentially simplify calculations with this invariant.
Patch by Max Kazantsev!
Reviewers: sanjoy, apilipenko, igor-laevsky, anna, mkuper, reames
Reviewed By: mkuper
Subscribers: mkuper, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D30161
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296898 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In current implementation the loop peeling happens after trip-count based partial unrolling and may
sometimes not happen at all due to it (for example, if trip count is known, but UP.Partial = false). This
is generally bad, the more than there are some situations where peeling is profitable even if the partial
unrolling is disabled.
This patch is a NFC which reorders peeling and partial unrolling application and prepares the code for
implementation of the said optimizations.
Patch by Max Kazantsev!
Reviewers: sanjoy, anna, reames, apilipenko, igor-laevsky, mkuper
Reviewed By: mkuper
Subscribers: mkuper, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D30243
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296897 91177308-0d34-0410-b5e6-96231b3b80d8
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.It also needs to recompute the proper Lane for
external use of vectorizable scalars based on shuffle mask.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Ide8773ce0ad3562f3cf4d1a0ad0f487e2f60ce5d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296863 91177308-0d34-0410-b5e6-96231b3b80d8
Such edges may otherwise result in infinite recursion if a pointer to a vtable
is reachable from the vtable itself. This can happen in practice if a TU
defines the ABI types used to implement RTTI, and is itself compiled with RTTI.
Fixes PR32121.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296839 91177308-0d34-0410-b5e6-96231b3b80d8
ValueTracking is used for more thorough analysis of operands. Based on the
analysis, either run-time checks can be simplified (e.g. check only one operand
instead of two) or the transformation can be avoided. For example, it is quite
often the case that a divisor is promoted from a shorter type and run-time
checks for it are redundant.
With additional compile-time analysis of values, two special cases naturally
arise and are addressed by the patch:
1) Both operands are known to be short enough. Then, the long division can be
simply replaced with a short one without CFG modification.
2) If a division is unsigned and the dividend is known to be short then the
long division is not needed at all. Because if the divisor is too big for
short division then the quotient is obviously zero (and the remainder is
equal to the dividend). Actually, the division is not needed when
(divisor > dividend).
Differential Revision: https://reviews.llvm.org/D29897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296832 91177308-0d34-0410-b5e6-96231b3b80d8
The most important goal of the patch is to break large insertFastDiv function
into separate pieces, so that later a different fast insertion logic can be
implemented using some of these pieces.
Differential Revision: https://reviews.llvm.org/D29896
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296828 91177308-0d34-0410-b5e6-96231b3b80d8
and also "clang-format GenericDomTreeConstruction.h, since the current
formatting makes it look like their is a bug in the loop indentation, and there
is not"
This reverts commit r296535.
There are still some open design questions which I would like to discuss. I
revert this for Daniel (who gave the OK), as he is on vacation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296812 91177308-0d34-0410-b5e6-96231b3b80d8
This re-applies r289696, which caused TSan perf regression, which has
since been addressed in separate changes (see PR for details).
See PR31382.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296759 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When InstCombine is optimizing certain select-cmp-br patterns
it replaces the result of the select in uses outside of the
basic block containing the select. This is only legal if the
path from the select to the outside use is disjoint from all
other paths out from the originating basic block.
The problem found was that InstCombiner::replacedSelectWithOperand
did not consider the case when both edges out from the br pointed
to the same label. In that case the paths aren't disjoint and the
transformation is illegal. This patch avoids the faulty rewrites
by verifying that there is a single flow to the successor where
we want to replace uses.
Reviewers: llvm-commits, spatel, majnemer
Differential Revision: https://reviews.llvm.org/D30455
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296752 91177308-0d34-0410-b5e6-96231b3b80d8
When computing the smallest and largest types for selecting the maximum
vectorization factor, we currently ignore loads and stores of pointer types if
the memory access is non-consecutive. We do this because such accesses must be
scalarized regardless of vectorization factor, and thus shouldn't be considered
when determining the factor. This patch makes this check less aggressive by
also considering non-consecutive accesses that may be vectorized, such as
interleaved accesses. Because we don't know at the time of the check if an
accesses will certainly be vectorized (this is a cost model decision given a
particular VF), we consider all accesses that can potentially be vectorized.
Differential Revision: https://reviews.llvm.org/D30305
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296747 91177308-0d34-0410-b5e6-96231b3b80d8
Now that terminators can be EH pads, this code needs to iterate over the
immediate dominators of the EH pad to find a valid insertion point.
Fix for PR32107
Patch by Robert Olliff!
Differential Revision: https://reviews.llvm.org/D30511
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296698 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The SLP vectorizer should propagate IR-level optimization hints/flags
(nsw, nuw, exact, fast-math) when converting scalar horizontal
reductions instructions into vectors, just like for other vectorized
instructions.
It doe not include IR propagation for extra arguments, we need to handle
original scalar operations for extra args to propagate correct flags.
Reviewers: mkuper, mzolotukhin, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30418
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296614 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We should preserve IR flags for extra args. These IR flags should be
taken from original scalar operations, not from the reduction
operations.
Reviewers: mkuper, mzolotukhin, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30447
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296613 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If horizontal reduction tree starts from the binary operation that is
used in PHI node, but this PHI is not used in horizontal reduction, we
may end up with extra addition of this PHI node after vectorization.
Here is an example:
```
%phi = phi i32 [ %tmp, %end], ...
...
%tmp = add i32 %tmp1, %tmp2
end:
```
after vectorization we always have something like:
```
%phi = phi i32 [ %tmp, %end], ...
...
%red = extractelement <8 x 32> %vec.red, 0
%tmp = add i32 %red, %phi
end:
```
even if `%phi` is not used in reduction tree. Patch considers these PHI
nodes as extra arguments and considers them in the final result iff they
really used in reduction.
Reviewers: mkuper, hfinkel, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30409
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296606 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Solves PR 31990.
The bad rewrite could replace a memcpy of one word with
store i4 -1
while it should actually be
store i8 -1
Hopefully opt and llc has improved enough so the original optimization
done by the code isn't needed anymore.
One already existing testcase is affected. It originally tested that
the memcpy was replaced with
load double
but since we now remove that rewrite it will be
load i64
instead.
Patch suggestion by Eli Friedman.
Reviewers: eli.friedman, majnemer, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D30254
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296585 91177308-0d34-0410-b5e6-96231b3b80d8
The practice in LV is that we emit analysis remarks and then finally report
either a missed or applied remark on the final decision whether vectorization
is taking place. On this code path, we were closing with an analysis remark.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296578 91177308-0d34-0410-b5e6-96231b3b80d8
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Id1e287f073fa4959713ba545fa4254db5da8b40d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296575 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently, our post-dom tree tries to ignore and remove the effects of
infinite loops. It fails miserably at this, because it tries to do it
ahead of time, and thus can only detect self-loops, and any other type
of infinite loop, it pretends doesn't exist at all.
This can, in a bunch of cases, lead to wrong answers and a completely
empty post-dom tree.
Wrong answer:
```
declare void foo()
define internal void @f() {
entry:
br i1 undef, label %bb35, label %bb3.i
bb3.i:
call void @foo()
br label %bb3.i
bb35.loopexit3:
br label %bb35
bb35:
ret void
}
```
We get:
```
Inorder PostDominator Tree:
[1] <<exit node>> {0,7}
[2] %bb35 {1,6}
[3] %bb35.loopexit3 {2,3}
[3] %entry {4,5}
```
This is a trivial modification of the testcase for PR 6047
Note that we pretend bb3.i doesn't exist.
We also pretend that bb35 post-dominates entry.
While it's true that it does not exit in a theoretical sense, it's not
really helpful to try to ignore the effect and pretend that bb35
post-dominates entry. Worse, we pretend the infinite loop does
nothing (it's usually considered a side-effect), and doesn't even
exist, even when it calls a function. Sadly, this makes it impossible
to use when you are trying to move code safely. All compilers also
create virtual or real single exit nodes (including us), and connect
infinite loops there (which this patch does). In fact, others have
worked around our behavior here, to the point of building their own
post-dom trees:
https://zneak.github.io/fcd/2016/02/17/structuring.html and pointing
out the region infrastructure is near-useless for them with postdom in
this state :(
Completely empty post-dom tree:
```
define void @spam() #0 {
bb:
br label %bb1
bb1: ; preds = %bb1, %bb
br label %bb1
bb2: ; No predecessors!
ret void
}
```
Printing analysis 'Post-Dominator Tree Construction' for function 'foo':
=============================--------------------------------
Inorder PostDominator Tree:
[1] <<exit node>> {0,1}
:(
(note that even if you ignore the effects of infinite loops, bb2
should be present as an exit node that post-dominates nothing).
This patch changes post-dom to properly handle infinite loops and does
root finding during calculation to prevent empty tress in such cases.
We match gcc's (and the canonical theoretical) behavior for infinite
loops (find the backedge, connect it to the exit block).
Testcases coming as soon as i finish running this on a ton of random graphs :)
Reviewers: chandlerc, davide
Subscribers: bryant, llvm-commits
Differential Revision: https://reviews.llvm.org/D29705
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296535 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: For SamplePGO, the profile may contain cross-module inline stacks. As we need to make sure the profile annotation happens when all the hot inline stacks are expanded, we need to pass this info to the module importer so that it can import proper functions if necessary. This patch implemented this feature by emitting cross-module targets as part of function entry metadata. In the module-summary phase, the metadata is used to build call edges that points to functions need to be imported.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: davidxl, llvm-commits
Differential Revision: https://reviews.llvm.org/D30053
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296498 91177308-0d34-0410-b5e6-96231b3b80d8
The LLVM backend cannot produce any debug info for an llvm::Function
without a DISubprogram attachment. When inlining a debug-info-carrying
function into a nodebug function, there is therefore no reason to keep
any debug info intrinsic calls or debug locations on the instructions.
This fixes a problem discovered in PR32042.
rdar://problem/30679307
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296488 91177308-0d34-0410-b5e6-96231b3b80d8