202 Commits

Author SHA1 Message Date
Matthew Simpson
ccc38cc5e7 Reapply r298620: [LV] Vectorize GEPs
This patch reapplies r298620. The original patch was reverted because of two
issues. First, the patch exposed a bug in InstCombine that caused the Chromium
builds to fail (PR32414). This issue was fixed in r299017. Second, the patch
introduced a bug in the vectorizer's scalars analysis that caused test suite
builds to fail on SystemZ. The scalars analysis was too aggressive and marked a
memory instruction scalar, even though it was going to be vectorized. This
issue has been fixed in the current patch and several new test cases for the
scalars analysis have been added.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299770 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-07 14:15:34 +00:00
Ivan Krasin
76f79b8934 Revert r298620: [LV] Vectorize GEPs
Reason: breaks linking Chromium with LLD + ThinLTO (a pass crashes)
LLVM bug: https://bugs.llvm.org//show_bug.cgi?id=32413

Original change description:

[LV] Vectorize GEPs

This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.

With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.

The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.

Original Differential Revision: https://reviews.llvm.org/D30710



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298735 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-24 20:49:43 +00:00
Matthew Simpson
77a842c0a2 [LV] Vectorize GEPs
This patch adds support for vectorizing GEPs. Previously, we only generated
vector GEPs on-demand when creating gather or scatter operations. All GEPs from
the original loop were scalarized by default, and if a pointer was to be stored
to memory, we would have to build up the pointer vector with insertelement
instructions.

With this patch, we will vectorize all GEPs that haven't already been marked
for scalarization.

The patch refines collectLoopScalars to more exactly identify the scalar GEPs.
The function now more closely resembles collectLoopUniforms. And the patch
moves vector GEP creation out of vectorizeMemoryInstruction and into the main
vectorization loop. The vector GEPs needed for gather and scatter operations
will have already been generated before vectoring the memory accesses.

Differential Revision: https://reviews.llvm.org/D30710

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298620 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-23 16:29:58 +00:00
Adam Nemet
90c4f1ee16 [LV] These remark should have been missed remarks
The practice in LV is that we emit analysis remarks and then finally report
either a missed or applied remark on the final decision whether vectorization
is taking place.  On this code path, we were closing with an analysis remark.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296578 91177308-0d34-0410-b5e6-96231b3b80d8
2017-03-01 04:31:15 +00:00
Craig Topper
f46e01bb23 [AVX-512] Fix the execution domain for AVX-512 integer broadcasts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296290 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-26 06:45:51 +00:00
Dehao Chen
1ae1089dec Increases full-unroll threshold.
Summary:
The default threshold for fully unroll is too conservative. This patch doubles the full-unroll threshold

This change will affect the following speccpu2006 benchmarks (performance numbers were collected from Intel Sandybridge):

Performance:

403	0.11%
433	0.51%
445	0.48%
447	3.50%
453	1.49%
464	0.75%

Code size:

403	0.56%
433	0.96%
445	2.16%
447	2.96%
453	0.94%
464	8.02%

The compiler time overhead is similar with code size.

Reviewers: davidxl, mkuper, mzolotukhin, hfinkel, chandlerc

Reviewed By: hfinkel, chandlerc

Subscribers: mehdi_amini, zzheng, efriedma, haicheng, hfinkel, llvm-commits

Differential Revision: https://reviews.llvm.org/D28368

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295538 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-18 03:46:51 +00:00
Elena Demikhovsky
92cc2185b8 [Loop Vectorizer] Cost-based decision for vectorization form of memory instruction.
Making the cost model selecting between Interleave, GatherScatter or Scalar vectorization form of memory instruction.
The right decision should be done for non-consecutive memory access instrcuctions that may have more than one vectorization solution.

This patch includes the following changes:
- Cost Model calculates the cost of Load/Store vector form and choose the better option between Widening, Interleave, GatherScactter and Scalarization. Cost Model keeps the widening decision.
- Arrays of Uniform and Scalar values are moved from Legality to Cost Model.
- Cost Model collects Uniforms and Scalars per VF. The collection is based on CM decision map of Loadis/Stores vectorization form.
- Vectorization of memory instruction is performed according to the CM decision.

Differential Revision: https://reviews.llvm.org/D27919



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294503 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-08 19:25:23 +00:00
Craig Topper
c9ff831ead [X86] Remove PCOMMIT instruction support since Intel has deprecated this instruction with no plans to release products with it.
Intel's documentation for the deprecation https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294405 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-08 05:45:39 +00:00
Adam Nemet
49e45b454f [LV] Also port failure remarks to new OptimizationRemarkEmitter API
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293866 91177308-0d34-0410-b5e6-96231b3b80d8
2017-02-02 05:41:51 +00:00
Mohammed Agabaria
e0bafdf059 [X86] enable memory interleaving for X86\SLM arch.
Differential Revision: https://reviews.llvm.org/D28547


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293040 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-25 09:14:48 +00:00
Matthew Simpson
1b2cd634db [LV] Add requires asserts to test case
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292280 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-17 22:21:33 +00:00
Matthew Simpson
caab3a817f [LV] Mark non-consecutive-like pointers non-uniform
If a memory instruction will be vectorized, but it's pointer operand is
non-consecutive-like, the instruction is a gather or scatter operation. Its
pointer operand will be non-uniform. This should fix PR31671.

Reference: https://llvm.org/bugs/show_bug.cgi?id=31671
Differential Revision: https://reviews.llvm.org/D28819

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292254 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-17 20:51:39 +00:00
Mohammed Agabaria
208cabd074 [X86] fixing failed test in commit: r291657
Missing Requires asserts.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291659 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-11 09:03:11 +00:00
Mohammed Agabaria
9c6b24cc3a [X86] updating TTI costs for arithmetic instructions on X86\SLM arch.
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.

special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq. 
In case if the real operands bitwidth <= 16.

Differential Revision: https://reviews.llvm.org/D28104 



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291657 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-11 08:23:37 +00:00
Mohammed Agabaria
6bf7471dbc Currently isLikelyComplexAddressComputation tries to figure out if the given stride seems to be 'complex' and need some extra cost for address computation handling.
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.

Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.

Differential Revision: https://reviews.llvm.org/D27518



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291106 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-05 14:03:41 +00:00
Matthew Simpson
b6b20e1aa2 [LV] Scalarize operands of predicated instructions
This patch attempts to scalarize the operand expressions of predicated
instructions if they were conditionally executed in the original loop. After
scalarization, the expressions will be sunk inside the blocks created for the
predicated instructions. The transformation essentially performs
un-if-conversion on the operands.

The cost model has been updated to determine if scalarization is profitable. It
compares the cost of a vectorized instruction, assuming it will be
if-converted, to the cost of the scalarized instruction, assuming that the
instructions corresponding to each vector lane will be sunk inside a predicated
block, possibly avoiding execution. If it's more profitable to scalarize the
entire expression tree feeding the predicated instruction, the expression will
be scalarized; otherwise, it will be vectorized. We only consider the cost of
the entire expression to accurately estimate the cost of the required
insertelement and extractelement instructions.

Differential Revision: https://reviews.llvm.org/D26083

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288909 91177308-0d34-0410-b5e6-96231b3b80d8
2016-12-07 15:03:32 +00:00
Robert Lougher
75d009930b [LoopVectorizer] When estimating reg usage, unused insts may "end" another use
The register usage algorithm incorrectly treats instructions whose value is
not used within the loop (e.g. those that do not produce a value).

The algorithm first calculates the usages within the loop.  It iterates over
the instructions in order, and records at which instruction index each use
ends (in fact, they're actually recorded against the next index, as this is
when we want to delete them from the open intervals).

The algorithm then iterates over the instructions again, adding each
instruction in turn to a list of open intervals.  Instructions are then
removed from the list of open intervals when they occur in the list of uses
ended at the current index.

The problem is, instructions which are not used in the loop are skipped.
However, although they aren't used, the last use of a value may have been
recorded against that instruction index.  In this case, the use is not deleted
from the open intervals, which may then bump up the estimated register usage.

This patch fixes the issue by simply moving the "is used" check after the loop
which erases the uses at the current index.

Differential Revision: https://reviews.llvm.org/D26554


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286969 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-15 14:27:33 +00:00
Simon Pilgrim
2e6f35ab88 [X86][AVX] Fixed v16i16/v32i8 ADD/SUB costs on AVX1 subtargets
Add explicit v16i16/v32i8 ADD/SUB costs, matching the costs of v4i64/v8i32 - they were missing for some reason.

This has side effects on the LV max bandwidth tests (AVX1 now prefers 128-bit vectors vs AVX2 which still prefers 256-bit)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286832 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-14 14:45:16 +00:00
Adam Nemet
7f0fc37d0d [LV] Stop saying "use -Rpass-analysis=loop-vectorize"
This is PR28376.

Unfortunately given the current structure of optimization diagnostics we
lack the capability to tell whether the user has
passed -Rpass-analysis=loop-vectorize since this is local to the
front-end (BackendConsumer::OptimizationRemarkHandler).

So rather than printing this even if the user has already
passed -Rpass-analysis, this patch just punts and stops recommending
this option.  I don't think that getting this right is worth the
complexity.

Differential Revision: https://reviews.llvm.org/D26563

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286662 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-11 22:51:46 +00:00
Dorit Nuzman
3aa311854a Second attempt at r285517.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285568 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-31 13:17:31 +00:00
Dorit Nuzman
6d3c9bdc8f Revert r285517 due to build failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285518 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-30 14:34:57 +00:00
Dorit Nuzman
b10d927158 [LoopVectorize] Make interleaved-accesses analysis less conservative about
possible pointer-wrap-around concerns, in some cases.

Before this patch, collectConstStridedAccesses (part of interleaved-accesses
analysis) called getPtrStride with [Assume=false, ShouldCheckWrap=true] when
examining all candidate pointers. This is too conservative. Instead, this
patch makes collectConstStridedAccesses use an optimistic approach, calling
getPtrStride with [Assume=true, ShouldCheckWrap=false], and then, once the
candidate interleave groups have been formed, revisits the pointer-wrapping
analysis but only where it matters: namely, in groups that have gaps, and where
the gaps are not at the very end of the group (in which case the loop is
peeled). This second time getPtrStride is called with [Assume=false,
ShouldCheckWrap=true], but this could further be improved to using Assume=true,
once we also add the logic to track that we are not going to meet the scev
runtime checks threshold.

Differential Revision: https://reviews.llvm.org/D25276



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285517 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-30 12:23:26 +00:00
Michael Kuperstein
fe040323c6 [X86] Enable interleaved memory access by default
This lets the loop vectorizer generate interleaved memory accesses on x86.

Differential Revision: https://reviews.llvm.org/D25350


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284779 91177308-0d34-0410-b5e6-96231b3b80d8
2016-10-20 21:04:31 +00:00
Matthew Simpson
1254de0c5c [LV] Move insertelement sequence after scalar definitions
After r279649 when getting a vector value from VectorLoopValueMap, we create an
insertelement sequence on-demand if the value has been scalarized instead of
vectorized. We previously inserted this insertelement sequence before the
value's first vector user. However, this insert location is problematic if that
user is the phi node of a first-order recurrence. With this patch, we move the
insertelement sequence after the last scalar instruction we created when
scalarizing the value. Thus, the value's vector definition in the new loop will
immediately follow its scalar definitions. This should fix PR30183.

Reference: https://llvm.org/bugs/show_bug.cgi?id=30183

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280001 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-29 20:14:04 +00:00
Matthew Simpson
428e79c2bb [LV] Unify vector and scalar maps
This patch unifies the data structures we use for mapping instructions from the
original loop to their corresponding instructions in the new loop. Previously,
we maintained two distinct maps for this purpose: WidenMap and ScalarIVMap.
WidenMap maintained the vector values each instruction from the old loop was
represented with, and ScalarIVMap maintained the scalar values each scalarized
induction variable was represented with. With this patch, all values created
for the new loop are maintained in VectorLoopValueMap.

The change allows for several simplifications. Previously, when an instruction
was scalarized, we had to insert the scalar values into vectors in order to
maintain the mapping in WidenMap. Then, if a user of the scalarized value was
also scalar, we had to extract the scalar values from the temporary vector we
created. We now aovid these unnecessary scalar-to-vector-to-scalar conversions.
If a scalarized value is used by a scalar instruction, the scalar value is used
directly. However, if the scalarized value is needed by a vector instruction,
we generate the needed insertelement instructions on-demand.

A common idiom in several locations in the code (including the scalarization
code), is to first get the vector values an instruction from the original loop
maps to, and then extract a particular scalar value. This patch adds
getScalarValue for this purpose along side getVectorValue as an interface into
VectorLoopValueMap. These functions work together to return the requested
values if they're available or to produce them if they're not.

The mapping has also be made less permissive. Entries can be added to
VectorLoopValue map with the new initVector and initScalar functions.
getVectorValue has been modified to return a constant reference to the mapped
entries.

There's no real functional change with this patch; however, in some cases we
will generate slightly different code. For example, instead of an insertelement
sequence following the definition of an instruction, it will now precede the
first use of that instruction. This can be seen in the test case changes.

Differential Revision: https://reviews.llvm.org/D23169

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279649 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-24 18:23:17 +00:00
Michael Kuperstein
e788186982 [LV, X86] Be more optimistic about vectorizing shifts.
Shifts with a uniform but non-constant count were considered very expensive to
vectorize, because the splat of the uniform count and the shift would tend to
appear in different blocks. That made the splat invisible to ISel, and we'd
scalarize the shift at codegen time.

Since r201655, CodeGenPrepare sinks those splats to be next to their use, and we
are able to select the appropriate vector shifts. This updates the cost model to
to take this into account by making shifts by a uniform cheap again.

Differential Revision: https://reviews.llvm.org/D23049


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277782 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-04 22:48:03 +00:00
Wei Mi
ba9543ccae [LoopVectorize] Change comment for isOutOfScope in collectLoopUniforms, NFC
Update comment for isOutOfScope and add a testcase for uniform value being used
out of scope.

Differential Revision: https://reviews.llvm.org/D23073


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277515 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-02 20:27:49 +00:00
Matthew Simpson
155b8551c6 [LV] Generate both scalar and vector integer induction variables
This patch enables the vectorizer to generate both scalar and vector versions
of an integer induction variable for a given loop. Previously, we only
generated a scalar induction variable if we knew all its users were going to be
scalar. Otherwise, we generated a vector induction variable. In the case of a
loop with both scalar and vector users of the induction variable, we would
generate the vector induction variable and extract scalar values from it for
the scalar users. With this patch, we now generate both versions of the
induction variable when there are both scalar and vector users and select which
version to use based on whether the user is scalar or vector.

Differential Revision: https://reviews.llvm.org/D22869

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277474 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-02 15:25:16 +00:00
Igor Breger
0691cf23e8 [AVX512] Don't use i128 masked gather/scatter/load/store. Do more accurately dataWidth check.
Differential Revision: http://reviews.llvm.org/D23055

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277435 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-02 09:15:28 +00:00
Craig Topper
a2cd077470 [AVX-512] Fix a test missed in r277327.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277330 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-01 08:15:30 +00:00
Matt Masten
bbbcccbfc4 Initial support for vectorization using svml (short vector math library).
Differential Revision: https://reviews.llvm.org/D19544


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277166 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-29 16:42:44 +00:00
Elena Demikhovsky
ba55955caa [Loop Vectorizer] Handling loops FP induction variables.
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
  A[i] = x;
  x -= fp_inc;
}

The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.

Differential Revision: https://reviews.llvm.org/D21330



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276554 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-24 07:24:54 +00:00
Matthew Simpson
0414f48742 [LV] Move vector int induction update to end of latch
This patch moves the update instruction for vectorized integer induction phi
nodes to the end of the latch block. This ensures consistent placement of all
induction updates across all the kinds of int inductions we create (scalar,
splat vector, or vector phi).

Differential Revision: https://reviews.llvm.org/D22416

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276339 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-21 21:20:15 +00:00
Adam Nemet
42a372e9b8 [OptDiag,LV] Add hotness attribute to applied-optimization remarks
Test coverage is provided by modifying the function in the FP-math
testcase that we are allowed to vectorize.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276223 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-21 01:07:13 +00:00
Adam Nemet
cebe016761 [OptDiag,LV] Add hotness attribute to the derived analysis remarks
This includes FPCompute and Aliasing.

Testcase is based on no_fpmath.ll.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276211 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-20 23:50:32 +00:00
Wei Mi
92a8d601a3 Recommit the patch "Use uniforms set to populate VecValuesToIgnore".
For instructions in uniform set, they will not have vector versions so
add them to VecValuesToIgnore.
For induction vars, those only used in uniform instructions or consecutive
ptrs instructions have already been added to VecValuesToIgnore above. For
those induction vars which are only used in uniform instructions or
non-consecutive/non-gather scatter ptr instructions, the related phi and
update will also be added into VecValuesToIgnore set.

The change will make the vector RegUsages estimation less conservative.

Differential Revision: https://reviews.llvm.org/D20474

The recommit fixed the testcase global_alias.ll.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275936 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-19 00:50:43 +00:00
Wei Mi
fba236f858 Revert rL275912.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275915 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-18 21:14:43 +00:00
Wei Mi
1938056381 Use uniforms set to populate VecValuesToIgnore.
For instructions in uniform set, they will not have vector versions so
add them to VecValuesToIgnore.
For induction vars, those only used in uniform instructions or consecutive
ptrs instructions have already been added to VecValuesToIgnore above. For
those induction vars which are only used in uniform instructions or
non-consecutive/non-gather scatter ptr instructions, the related phi and
update will also be added into VecValuesToIgnore set.

The change will make the vector RegUsages estimation less conservative.

Differential Revision: https://reviews.llvm.org/D20474


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275912 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-18 20:59:53 +00:00
Michael Kuperstein
b1fce5cc4c [X86] Make some cast costs more precise
Make some AVX and AVX512 cast costs more precise.
Based on part of a patch by Elena Demikhovsky (D15604).

Differential Revision: http://reviews.llvm.org/D22064


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@275106 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-11 21:39:44 +00:00
Elena Demikhovsky
407fc99045 Fixed a bug in vectorizing GEP before gather/scatter intrinsic.
Vectorizing GEP was incorrect and broke SSA in some cases.
 
The patch fixes PR27997 https://llvm.org/bugs/show_bug.cgi?id=27997.

Differential revision: http://reviews.llvm.org/D22035



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274735 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-07 06:06:46 +00:00
Michael Kuperstein
c7432f9ad3 [TTI] The cost model should not assume vector casts get completely scalarized
The cost model should not assume vector casts get completely scalarized, since
on targets that have vector support, the common case is a partial split up to
the legal vector size. So, when a vector cast  gets split, the resulting casts
end up legal and cheap.

Instead of pessimistically assuming scalarization, base TTI can use the costs
the concrete TTI provides for the split vector, plus a fudge factor to account
for the cost of the split itself. This fudge factor is currently 1 by default,
except on AMDGPU where inserts and extracts are considered free.

Differential Revision: http://reviews.llvm.org/D21251


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274642 91177308-0d34-0410-b5e6-96231b3b80d8
2016-07-06 17:30:56 +00:00
Matt Arsenault
6bcca1a915 SLPVectorizer: Move propagateMetadata to VectorUtils
This will be re-used by the LoadStoreVectorizer.

Fix handling of range metadata and testcase by Justin Lebar.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274281 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-30 21:17:59 +00:00
Wei Mi
693c332887 Refine the set of UniformAfterVectorization instructions.
Except the seed uniform instructions (conditional branch and consecutive ptr
instructions), dependencies to be added into uniform set should only be used
by existing uniform instructions or intructions outside of current loop.

Differential Revision: http://reviews.llvm.org/D21755


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274262 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-30 18:42:56 +00:00
Artur Pilipenko
48917c9e44 Support arbitrary addrspace pointers in masked load/store intrinsics
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).

This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.

The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.

Reviewed By: reames

Differential Revision: http://reviews.llvm.org/D17270


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274043 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-28 18:27:25 +00:00
Artur Pilipenko
be0da39a48 Revert -r273892 "Support arbitrary addrspace pointers in masked load/store intrinsics" since some of the clang tests don't expect to see the updated signatures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273895 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-27 16:54:33 +00:00
Artur Pilipenko
9227558e8e Support arbitrary addrspace pointers in masked load/store intrinsics
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).

This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.

The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.

Reviewed By: reames

Differential Revision: http://reviews.llvm.org/D17270


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273892 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-27 16:29:26 +00:00
Michael Kuperstein
01d6c3dbf9 [LV] For some IVs, use vector phis instead of widening in the loop body
Previously, whenever we needed a vector IV, we would create it on the fly,
by splatting the scalar IV and adding a step vector. Instead, we can create a
real vector IV. This tends to save a couple of instructions per iteration.

This only changes the behavior for the most basic case - integer primary
IVs with a constant step.

Differential Revision: http://reviews.llvm.org/D20315


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271410 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-01 17:16:46 +00:00
Tim Northover
5b363367fe Move test to X86 directory: I think it depends on X86 TTI.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271019 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-27 16:56:54 +00:00
Hal Finkel
d86e7af14a Look for a loop's starting location in the llvm.loop metadata
Getting accurate locations for loops is important, because those locations are
used by the frontend to generate optimization remarks. Currently, optimization
remarks for loops often appear on the wrong line, often the first line of the
loop body instead of the loop itself. This is confusing because that line might
itself be another loop, or might be somewhere else completely if the body was
inlined function call. This happens because of the way we find the loop's
starting location. First, we look for a preheader, and if we find one, and its
terminator has a debug location, then we use that. Otherwise, we look for a
location on an instruction in the loop header.

The fallback heuristic is not bad, but will almost always find the beginning of
the body, and not the loop statement itself. The preheader location search
often fails because there's often not a preheader, and even when there is a
preheader, depending on how it was formed, it sometimes carries the location of
some preceeding code.

I don't see any good theoretical way to fix this problem. On the other hand,
this seems like a straightforward solution: Put the debug location in the
loop's llvm.loop metadata. A companion Clang patch will cause Clang to insert
llvm.loop metadata with appropriate locations when generating debugging
information. With these changes, our loop remarks have much more accurate
locations.

Differential Revision: http://reviews.llvm.org/D19738

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270771 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-25 21:42:37 +00:00
Sanjay Patel
cab076f44c [x86] avoid code explosion from LoopVectorizer for gather loop (PR27826)
By making pointer extraction from a vector more expensive in the cost model,
we avoid the vectorization of a loop that is very likely to be memory-bound:
https://llvm.org/bugs/show_bug.cgi?id=27826

There are still bugs related to this, so we may need a more general solution
to avoid vectorizing obviously memory-bound loops when we don't have HW gather
support.

Differential Revision: http://reviews.llvm.org/D20601



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270729 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-25 17:27:54 +00:00