This is a generally useful utility; there's no reason to have it hidden
in CodeGenDAGPatterns.cpp.
Also, rename it to fit the other comparators in Record.h
Review by Jakob.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164189 91177308-0d34-0410-b5e6-96231b3b80d8
store this and use it to not emit long nops when the CPU is geode which
doesnt support them.
Fixes PR11212.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164132 91177308-0d34-0410-b5e6-96231b3b80d8
Now where we used to call ReInitMCSubtargetInfo, we actually recompute
the same information as InitMCSubtargetInfo instead of only setting
the feature bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164105 91177308-0d34-0410-b5e6-96231b3b80d8
Add LIS::pruneValue() and extendToIndices(). These two functions are
used by the register coalescer when merging two live ranges requires
more than a trivial value mapping as supported by LiveInterval::join().
The pruneValue() function can remove the part of a value number that is
going to conflict in join(). Afterwards, extendToIndices can restore the
live range, using any new dominating value numbers and updating the SSA
form.
Use this complex value mapping to support merging a register into a
vector lane that has a conflicting value, but the clobbered lane is
undef.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164074 91177308-0d34-0410-b5e6-96231b3b80d8
A value that is live in to a basic block should be returned by valueIn()
in LiveRangeQuery(getMBBStartIdx(MBB)), unless it is a PHI-def which
should be returned by valueDefined() instead.
Current code isn't using this functionality. Future code will.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163990 91177308-0d34-0410-b5e6-96231b3b80d8
If a PHI value happens to be live out from the layout predecessor of its
def block, the def slot index will be in the middle of the segment:
%vreg11 = [192r,240B:0)[352r,416B:2)[416B,496r:1) 0@192r 1@480B-phi %2@352r
A LiveRangeQuery for 480 should return NULL from valueIn() since the
PHI value is defined at the block entry, not live in to the block.
No test case, future code depends on this functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163971 91177308-0d34-0410-b5e6-96231b3b80d8
new one, and add support for running the new pass in that mode and in
that slot of the pass manager. With this the new pass can completely
replace the old one within the pipeline.
The strategy for enabling or disabling the SSAUpdater logic is to do it
by making the requirement of the domtree analysis optional. By default,
it is required and we get the standard mem2reg approach. This is usually
the desired strategy when run in stand-alone situations. Within the
CGSCC pass manager, we disable requiring of the domtree analysis and
consequentially trigger fallback to the SSAUpdater promotion.
In theory this would allow the pass to re-use a domtree if one happened
to be available even when run in a mode that doesn't require it. In
practice, it lets us have a single pass rather than two which was
simpler for me to wrap my head around.
There is a hidden flag to force the use of the SSAUpdater code path for
the purpose of testing. The primary testing strategy is just to run the
existing tests through that path. One notable difference is that it has
custom code to handle lifetime markers, and one of the tests has been
enhanced to exercise that code.
This has survived a bootstrap and the test suite without serious
correctness issues, however my run of the test suite produced *very*
alarming performance numbers. I don't entirely understand or trust them
though, so more investigation is on-going.
To aid my understanding of the performance impact of the new SROA now
that it runs throughout the optimization pipeline, I'm enabling it by
default in this commit, and will disable it again once the LNT bots have
picked up one iteration with it. I want to get those bots (which are
much more stable) to evaluate the impact of the change before I jump to
any conclusions.
NOTE: Several Clang tests will fail because they run -O3 and check the
result's order of output. They'll go back to passing once I disable it
again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163965 91177308-0d34-0410-b5e6-96231b3b80d8
- The current_pos function is supposed to return all the written bytes, not the
current position of the underlying stream.
- This caused tell() to be broken whenever the underlying stream had buffered
content.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163948 91177308-0d34-0410-b5e6-96231b3b80d8