1. Make it fold blocks separated by an unconditional branch. This enables
jump threading to see a broader scope.
2. Make jump threading able to eliminate locally redundant loads when they
feed the branch condition of a block. This frequently occurs due to
reg2mem running.
3. Make jump threading able to eliminate *partially redundant* loads when
they feed the branch condition of a block. This is common in code with
lots of loads and stores like C++ code and 255.vortex.
This implements thread-loads.ll and rdar://6402033.
Per the fixme's, several pieces of this should be moved into Transforms/Utils.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60148 91177308-0d34-0410-b5e6-96231b3b80d8
performance in most cases on the Grawp tester, but does speed some
things up (like shootout/hash by 15%). This also doesn't impact
compile time in a noticable way on the Grawp tester.
It also, of course, gets the testcase it was designed for right :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60120 91177308-0d34-0410-b5e6-96231b3b80d8
-enable-smarter-addr-folding to llc) that gives CGP a better
cost model for when to sink computations into addressing modes.
The basic observation is that sinking increases register
pressure when part of the addr computation has to be available
for other reasons, such as having a use that is a non-memory
operation. In cases where it works, it can substantially reduce
register pressure.
This code is currently an overall win on 403.gcc and 255.vortex
(the two things I've been looking at), but there are several
things I want to do before enabling it by default:
1. This isn't doing any caching of results, so it is much slower
than it could be. It currently slows down release-asserts llc
by 1.7% on 176.gcc: 27.12s -> 27.60s.
2. This doesn't think about inline asm memory operands yet.
3. The cost model botches the case when the needed value is live
across the computation for other reasons.
I'll continue poking at this, and eventually turn it on as llcbeta.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60074 91177308-0d34-0410-b5e6-96231b3b80d8
optimize addressing modes. This allows us to optimize things like isel-sink2.ll
into:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 7(%eax), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
leal 4(%eax), %eax
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 3(%eax), %eax
ret
This shrinks (e.g.) 403.gcc from 1133510 to 1128345 lines of .s.
Note that the 2008-10-16-SpillerBug.ll testcase is dubious at best, I doubt
it is really testing what it thinks it is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60068 91177308-0d34-0410-b5e6-96231b3b80d8
(a) Remove conditionally removed code in SelectXAddr. Basically, hope for the
best that the A-form and D-form address predicates catch everything before
the code decides to emit a X-form address.
(b) Expand vector store test cases to include the usual suspects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60034 91177308-0d34-0410-b5e6-96231b3b80d8
introduce any new spilling; it just uses unused registers.
Refactor the SUnit topological sort code out of the RRList scheduler and
make use of it to help with the post-pass scheduler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59999 91177308-0d34-0410-b5e6-96231b3b80d8
(a) Slight rethink on i64 zero/sign/any extend code - use a shuffle to
directly zero-extend i32 to i64, but use rotates and shifts for
sign extension. Also ensure unified register consistency.
(b) Add new test harness for i64 operations: i64ops.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59970 91177308-0d34-0410-b5e6-96231b3b80d8
(a) Improve the extract element code: there's no need to do gymnastics with
rotates into the preferred slot if a shuffle will do the same thing.
(b) Rename a couple of SPUISD pseudo-instructions for readability and better
semantic correspondence.
(c) Fix i64 sign/any/zero extension lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59965 91177308-0d34-0410-b5e6-96231b3b80d8
indicate functions that allocate, such as operator new, or list::insert. The
actual definition is slightly less strict (for now).
No changes to the bitcode reader/writer, asm printer or verifier were needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59934 91177308-0d34-0410-b5e6-96231b3b80d8
- When scavenging a register, in addition to the spill, insert a restore before the first use.
- Abort if client is looking to scavenge a register even when a previously scavenged register is still live.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59697 91177308-0d34-0410-b5e6-96231b3b80d8
it is likely that the optimizer deleted code in between these
two intrinsics. Keep only the last llvm.dbg.stoppoint in this case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59657 91177308-0d34-0410-b5e6-96231b3b80d8
problems for example when LLVM is built with --with-extra-options=-m64
and as defaults to x86-32 mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59640 91177308-0d34-0410-b5e6-96231b3b80d8
- Only focusing on llvm_gcc_c for now, eventually this needs to be
refactored so it can be shared via all the gcc-like tools.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59582 91177308-0d34-0410-b5e6-96231b3b80d8
Use it to safely handle less-than-or-equals-to exit conditions in loops. These
also occur when the loop exit branch is exit on true because SCEV inverses the
icmp predicate.
Use it again to handle non-zero strides, but only with an unsigned comparison
in the exit condition.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@59528 91177308-0d34-0410-b5e6-96231b3b80d8