doesn't split legal vector operands. This is necessary because the
type legalization (and therefore, vector splitting) code will be going
away soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72349 91177308-0d34-0410-b5e6-96231b3b80d8
The DAGCombiner created a negative shiftamount, stored in an
unsigned variable. Later the optimizer eliminated the shift entirely as being
undefined.
Example: (srl (shl X, 56) 48). ShiftAmt is 4294967288.
Fix it by checking that the shiftamount is positive, and storing in a signed
variable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72331 91177308-0d34-0410-b5e6-96231b3b80d8
and it wasn't generating calls through @PLT for these functions.
hasLocalLinkage() is now false for available_externally,
I attempted to fix the inliner and dce to handle available_externally properly.
It passed make check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72328 91177308-0d34-0410-b5e6-96231b3b80d8
will allow simplifying LegalizeDAG to eliminate type legalization. (I
have a patch to do that, but it's not quite finished; I'll commit it
once it's finished and I've fixed any review comments for this patch.)
See the comment at the beginning of
lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp for more details on the
motivation for this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72325 91177308-0d34-0410-b5e6-96231b3b80d8
systems instead of attempting to promote them to a 64-bit SINT_TO_FP or
FP_TO_SINT. This is in preparation for removing the type legalization
code from LegalizeDAG: once type legalization is gone from LegalizeDAG,
it won't be able to handle the i64 operand/result correctly.
This isn't quite ideal, but I don't think any other operation for any
target ends up in this situation, so treating this case specially seems
reasonable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72324 91177308-0d34-0410-b5e6-96231b3b80d8
code in preparation for code generation. The main thing it does
is handle the case when eh.exception calls (and, in a future
patch, eh.selector calls) are far away from landing pads. Right
now in practice you only find eh.exception calls close to landing
pads: either in a landing pad (the common case) or in a landing
pad successor, due to loop passes shifting them about. However
future exception handling improvements will result in calls far
from landing pads:
(1) Inlining of rewinds. Consider the following case:
In function @f:
...
invoke @g to label %normal unwind label %unwinds
...
unwinds:
%ex = call i8* @llvm.eh.exception()
...
In function @g:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
"rethrow exception"
Now inline @g into @f. Currently this is turned into:
In function @f:
...
invoke @something to label %continue unwind label %handler
...
handler:
%ex = call i8* @llvm.eh.exception()
... perform cleanups ...
invoke "rethrow exception" to label %normal unwind label %unwinds
unwinds:
%ex = call i8* @llvm.eh.exception()
...
However we would like to simplify invoke of "rethrow exception" into
a branch to the %unwinds label. Then %unwinds is no longer a landing
pad, and the eh.exception call there is then far away from any landing
pads.
(2) Using the unwind instruction for cleanups.
It would be nice to have codegen handle the following case:
invoke @something to label %continue unwind label %run_cleanups
...
handler:
... perform cleanups ...
unwind
This requires turning "unwind" into a library call, which
necessarily takes a pointer to the exception as an argument
(this patch also does this unwind lowering). But that means
you are using eh.exception again far from a landing pad.
(3) Bugpoint simplifications. When bugpoint is simplifying
exception handling code it often generates eh.exception calls
far from a landing pad, which then causes codegen to assert.
Bugpoint then latches on to this assertion and loses sight
of the original problem.
Note that it is currently rare for this pass to actually do
anything. And in fact it normally shouldn't do anything at
all given the code coming out of llvm-gcc! But it does fire
a few times in the testsuite. As far as I can see this is
almost always due to the LoopStrengthReduce codegen pass
introducing pointless loop preheader blocks which are landing
pads and only contain a branch to another block. This other
block contains an eh.exception call. So probably by tweaking
LoopStrengthReduce a bit this can be avoided.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72276 91177308-0d34-0410-b5e6-96231b3b80d8
assuming that the use of the value is in a block dominated by the
"normal" destination. LangRef.html and other documentation sources
don't explicitly guarantee this, but it seems to be assumed in
other places in LLVM at least.
This fixes an assertion failure on the included testcase, which
is derived from the Ada testsuite.
FixUsesBeforeDefs is a temporary measure which I'm looking to
replace with a more capable solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72266 91177308-0d34-0410-b5e6-96231b3b80d8
use in expanding SCEVAddExprs with GEPs. The operands of a
SCEVMulExpr need to be multiplied together, not added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72250 91177308-0d34-0410-b5e6-96231b3b80d8
This only rejects mismatches between target specific calling convention
and C/LLVM specific calling convention.
There are too many fastcc/C, coldcc/cc42 mismatches in the testsuite, these are
not reject by the verifier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72248 91177308-0d34-0410-b5e6-96231b3b80d8
type as a target independent constant expression. I confess
that I didn't check that this method works as intended (though
I did test the equivalent hand-written IR a little). But what
could possibly go wrong!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72213 91177308-0d34-0410-b5e6-96231b3b80d8
Instcombine to be more aggressive about using SimplifyDemandedBits
on shift nodes. This allows a shift to be simplified to zero in the
included test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72204 91177308-0d34-0410-b5e6-96231b3b80d8
the 'constract function dbg thingy'. Rename some methods to make them consistent
with the rest of the methods. Move the 'Emit' methods to the end of the file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72192 91177308-0d34-0410-b5e6-96231b3b80d8
build an integer and cast that to a float. This fixes a crash
caused by trying to split an f32 into two f16's.
This changes the behavior in test/CodeGen/XCore/fneg.ll because that
testcase now triggers a DAGCombine which converts the fneg into an integer
operation. If someone is interested, it's probably possible to tweak
the test to generate an actual fneg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72162 91177308-0d34-0410-b5e6-96231b3b80d8
of the comparison is defined inside the loop. This fixes a
use-before-def problem, because the transformation puts a use
of the RHS outside the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72149 91177308-0d34-0410-b5e6-96231b3b80d8
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72093 91177308-0d34-0410-b5e6-96231b3b80d8
function, this could be many, many times. We don't want to re-add variables to
that DIE for each time. We just want to add them once. Check to make sure that
we haven't added them already.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72047 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce a new class (MachineCodeInfo) that the JIT can fill in with details. Right now, just the address and the size of the machine code are reported.
Patch by Evan Phoenix!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72040 91177308-0d34-0410-b5e6-96231b3b80d8
to run last because it needs to know the exact size and position of every
basic block. Currently CodePlacementOpt is set up to run last. It might be
worthwhile to investigate reordering these passes, but for now, let's just
make it work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72037 91177308-0d34-0410-b5e6-96231b3b80d8
between integers and pointers when the source type is marked signed,
since inttoptr and ptrtoint always use zero-extension when the destination
is larger than the source.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72025 91177308-0d34-0410-b5e6-96231b3b80d8
The following is checked:
* Operand counts: All explicit operands must be present.
* Register classes: All physical and virtual register operands must be
compatible with the register class required by the instruction descriptor.
* Register live intervals: Registers must be defined only once, and must be
defined before use.
The machine code verifier is enabled with the command-line option
'-verify-machineinstrs', or by defining the environment variable
LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive all the
verifier errors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71918 91177308-0d34-0410-b5e6-96231b3b80d8
logical/sane approach to organizing all of the stuff that goes into writing out
DWARF information. Honestly? even this is too complex for what it's supposed to
be doing.
Trivia: It *looks* like there would be functionality changes, however there aren't!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71821 91177308-0d34-0410-b5e6-96231b3b80d8
llvm.eh.sjlj.* for better clarity as to their purpose and scope. Add
a description of llvm.eh.sjlj.setjmp to ExceptionHandling.html.
(llvm.eh.sjlj.longjmp documentation coming when that implementation is
added).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71758 91177308-0d34-0410-b5e6-96231b3b80d8
Basically, there was a situation where it was getting an empty vector and doing
a .back() on that. Which isn't cool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71746 91177308-0d34-0410-b5e6-96231b3b80d8
block with its unique predecessor. Change the code to assert if that is not
the case, instead of trying to handle situations where the block has
multiple predecessors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71744 91177308-0d34-0410-b5e6-96231b3b80d8
of exception handling builtin sjlj targets in functions turns out not to
be necessary. Marking the intrinsic implementation in the .td file as
defining all registers is sufficient to get the context saved properly by
the containing function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71743 91177308-0d34-0410-b5e6-96231b3b80d8
Dan was trying to catch the case where a basic block ends with a conditional
branch to the fall-through block. In this case, all the instructions have
been moved out of FromBBI, leaving it empty. It cannot end with a
conditional branch. As the existing comment indicates, it will always fall
through to the next block. If the block already had the next block (NBB)
listed as a successor, the preceding loop has a check for that and does not
remove it. Thus, we need to check and add the successor only when it is
not already listed.
With Dan's change, the empty block often ends up with the fall-through
successor listed twice. This exposed the problem in pr4195, where
CodePlacementOpt did not handle the same predecessor listed more than once.
It is also at least partially responsible for pr4202 and probably a similar
issue with Thumb branches being out of range.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71742 91177308-0d34-0410-b5e6-96231b3b80d8
booleans. This gives a better indication of what the "addReg()" is
doing. Remembering what all of those booleans mean isn't easy, especially if you
aren't spending all of your time in that code.
I took Jakob's suggestion and made it illegal to pass in "true" for the
flag. This should hopefully prevent any unintended misuse of this (by reverting
to the old way of using addReg()).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71722 91177308-0d34-0410-b5e6-96231b3b80d8
belonged. The variable declaration stuff wasn't happy with it where it
was. Sorry that the testcase is so big. Bugpoint wasn't able to reduce it
successfully.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71714 91177308-0d34-0410-b5e6-96231b3b80d8
is not known to be nothrow. This allows readnone/readonly functions
to be deleted even if we don't know whether the callee can throw.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71676 91177308-0d34-0410-b5e6-96231b3b80d8
IVUsers.cpp: In member function ‘bool llvm::IVUsers::AddUsersIfInteresting(llvm::Instruction*)’:
IVUsers.cpp:221: warning: ‘isSigned’ may be used uninitialized in this function
with gcc-4.3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71654 91177308-0d34-0410-b5e6-96231b3b80d8
getNoopOrSignExtend, and getTruncateOrNoop. These are similar
to getTruncateOrZeroExtend etc., except that they assert that
the conversion is either not widening or narrowing, as
appropriate. These will be used in some upcoming fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71632 91177308-0d34-0410-b5e6-96231b3b80d8
without one. Use it where we were using abs on
int64_t objects.
(I strongly suspect the casts to unsigned in the
fragments in LoopStrengthReduce are not doing whatever
the original intent was, but the obvious change to
uint64_t doesn't work. Maybe later.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71612 91177308-0d34-0410-b5e6-96231b3b80d8
a supporting preliminary patch for GCC-compatible SjLJ exception handling. Note that these intrinsics are not designed to be invoked directly by the user, but
rather used by the front-end as target hooks for exception handling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71610 91177308-0d34-0410-b5e6-96231b3b80d8