This time, also fix the caller of AddGlue to properly handle
incomplete chains. AddGlue had failure modes, but shamefully hid them
from its caller. It's luck ran out.
Fixes rdar://11314175: BuildSchedUnits assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155749 91177308-0d34-0410-b5e6-96231b3b80d8
DAGCombine strangeness may result in multiple loads from the same
offset. They both may try to glue themselves to another load. We could
insist that the redundant loads glue themselves to each other, but the
beter fix is to bail out from bad gluing at the time we detect it.
Fixes rdar://11314175: BuildSchedUnits assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155668 91177308-0d34-0410-b5e6-96231b3b80d8
expensive "getFirstTerminator" call. This reduces the time of compilation in
PR12258 from >10 minutes to < 10 seconds.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152704 91177308-0d34-0410-b5e6-96231b3b80d8
ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation.
ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class.
ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target.
Specific changes:
- Removed driver code from ScheduleDAG. clearDAG is the only interface needed.
- Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls.
- Added ScheduleDAGInstrs::begin()/end() public API.
- Moved Sequence into the driver layer, which is specific to the scheduling algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
Removed the check that peeks past EXTRA_SUBREG, which I don't think
makes sense any more. Intead treat it as a normal register def. No
significant affect on x86 or ARM benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133917 91177308-0d34-0410-b5e6-96231b3b80d8
more callee-saved registers and introduce copies. Only allows it if scheduling
a node above calls would end up lessen register pressure.
Call operands also has added ABI restrictions for register allocation, so be
extra careful with hoisting them above calls.
rdar://9329627
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130245 91177308-0d34-0410-b5e6-96231b3b80d8
This is done by pushing physical register definitions close to their
use, which happens to handle flag definitions if they're not glued to
the branch. This seems to be generally a good thing though, so I
didn't need to add a target hook yet.
The primary motivation is to generate code closer to what people
expect and rule out missed opportunity from enabling macro-op
fusion. As a side benefit, we get several 2-5% gains on x86
benchmarks. There is one regression:
SingleSource/Benchmarks/Shootout/lists slows down be -10%. But this is
an independent scheduler bug that will be tracked separately.
See rdar://problem/9283108.
Incidentally, pre-RA scheduling is only half the solution. Fixing the
later passes is tracked by:
<rdar://problem/8932804> [pre-RA-sched] on x86, attempt to schedule CMP/TEST adjacent with condition jump
Fixes:
<rdar://problem/9262453> Scheduler unnecessary break of cmp/jump fusion
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129508 91177308-0d34-0410-b5e6-96231b3b80d8
Additional fixes:
Do something reasonable for subtargets with generic
itineraries by handle node latency the same as for an empty
itinerary. Now nodes default to unit latency unless an itinerary
explicitly specifies a zero cycle stage or it is a TokenFactor chain.
Original fixes:
UnitsSharePred was a source of randomness in the scheduler: node
priority depended on the queue data structure. I rewrote the recent
VRegCycle heuristics to completely replace the old heuristic without
any randomness. To make the ndoe latency adjustments work, I also
needed to do something a little more reasonable with TokenFactor. I
gave it zero latency to its consumers and always schedule it as low as
possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129421 91177308-0d34-0410-b5e6-96231b3b80d8
UnitsSharePred was a source of randomness in the scheduler: node
priority depended on the queue data structure. I rewrote the recent
VRegCycle heuristics to completely replace the old heuristic without
any randomness. To make these heuristic adjustments to node latency work,
I also needed to do something a little more reasonable with TokenFactor. I
gave it zero latency to its consumers and always schedule it as low as
possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129383 91177308-0d34-0410-b5e6-96231b3b80d8
induction variable. The preRA scheduler is unaware of induction vars,
so we look for potential "virtual register cycles" instead.
Fixes <rdar://problem/8946719> Bad scheduling prevents coalescing
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@129100 91177308-0d34-0410-b5e6-96231b3b80d8
with this before since none of the register tracking or nightly tests
had unschedulable nodes.
This should probably be refixed with a special default Node that just
returns some "don't touch me" values.
Fixes PR9427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127263 91177308-0d34-0410-b5e6-96231b3b80d8
regs. This is the only change in this checkin that may affects the
default scheduler. With better register tracking and heuristics, it
doesn't make sense to artificially lower the register limit so much.
Added -sched-high-latency-cycles and X86InstrInfo::isHighLatencyDef to
give the scheduler a way to account for div and sqrt on targets that
don't have an itinerary. It is currently defaults to 10 (the actual
number doesn't matter much), but only takes effect on non-default
schedulers: list-hybrid and list-ilp.
Added several heuristics that can be individually disabled for the
non-default sched=list-ilp mode. This helps us determine how much
better we can do on a given benchmark than the default
scheduler. Certain compute intensive loops run much faster in this
mode with the right set of heuristics, and it doesn't seem to have
much negative impact elsewhere. Not all of the heuristics are needed,
but we still need to experiment to decide which should be disabled by
default for sched=list-ilp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@127067 91177308-0d34-0410-b5e6-96231b3b80d8
precisely track pressure on a selection DAG, but we can at least keep
it balanced. This design accounts for various interesting aspects of
selection DAGS: register and subregister copies, glued nodes, dead
nodes, unused registers, etc.
Added SUnit::NumRegDefsLeft and ScheduleDAGSDNodes::RegDefIter.
Note: I disabled PrescheduleNodesWithMultipleUses when register
pressure is enabled, based on no evidence other than I don't think it
makes sense to have both enabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124853 91177308-0d34-0410-b5e6-96231b3b80d8
1. Fix pre-ra scheduler so it doesn't try to push instructions above calls to
"optimize for latency". Call instructions don't have the right latency and
this is more likely to use introduce spills.
2. Fix if-converter cost function. For ARM, it should use instruction latencies,
not # of micro-ops since multi-latency instructions is completely executed
even when the predicate is false. Also, some instruction will be "slower"
when they are predicated due to the register def becoming implicit input.
rdar://8598427
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118135 91177308-0d34-0410-b5e6-96231b3b80d8
operand and one of them has a single use that is a live out copy, favor the
one that is live out. Otherwise it will be difficult to eliminate the copy
if the instruction is a loop induction variable update. e.g.
BB:
sub r1, r3, #1
str r0, [r2, r3]
mov r3, r1
cmp
bne BB
=>
BB:
str r0, [r2, r3]
sub r3, r3, #1
cmp
bne BB
This fixed the recent 256.bzip2 regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117675 91177308-0d34-0410-b5e6-96231b3b80d8
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115755 91177308-0d34-0410-b5e6-96231b3b80d8
take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
if a block is split (by a custom inserter), the insert point may be in a
different block than it was originally. This fixes 32-bit llvm-gcc
bootstrap builds, and I haven't been able to reproduce it otherwise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108060 91177308-0d34-0410-b5e6-96231b3b80d8
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108039 91177308-0d34-0410-b5e6-96231b3b80d8