Since there's no way to ensure the type unit in the .dwo and the type
unit skeleton in the .o are correlated, this cannot work.
This implementation is a bit inefficient for a few reasons, called out
in comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207323 91177308-0d34-0410-b5e6-96231b3b80d8
This gets us pretty code for divs of i16 vectors. Turn the existing
intrinsics into the corresponding nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207317 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.
I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207315 91177308-0d34-0410-b5e6-96231b3b80d8
more than 1 instruction. The caller need to be aware of this
and adjust instruction iterators accordingly.
rdar://16679376
Repaired r207302.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207309 91177308-0d34-0410-b5e6-96231b3b80d8
The included test case would return the incorrect results, because the expansion
of an shift with a constant shift amount of 0 would generate undefined behavior.
This is because ExpandShiftByConstant assumes that all shifts by constants with
a value of 0 have already been optimized away. This doesn't happen for opaque
constants and usually this isn't a problem, because opaque constants won't take
this code path - they are not supposed to. In the case that the opaque constant
has to be expanded by the legalizer, the legalizer would drop the opaque flag.
In this case we hit the limitations of ExpandShiftByConstant and create incorrect
code.
This commit fixes the legalizer by not dropping the opaque flag when expanding
opaque constants and adding an assertion to ExpandShiftByConstant to catch this
not supported case in the future.
This fixes <rdar://problem/16718472>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207304 91177308-0d34-0410-b5e6-96231b3b80d8
more than 1 instruction. The caller need to be aware of this
and adjust instruction iterators accordingly.
rdar://16679376
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207302 91177308-0d34-0410-b5e6-96231b3b80d8
Scaling factors are not free on X86 because every "complex" addressing mode
breaks the related instruction into 2 allocations instead of 1.
<rdar://problem/16730541>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207301 91177308-0d34-0410-b5e6-96231b3b80d8
right intrinsics.
A packed logical shift right with a shift count bigger than or equal to the
element size always produces a zero vector. In all other cases, it can be
safely replaced by a 'lshr' instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207299 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If we're doing a v4f32/v4i32 shuffle on x86 with SSE4.1, we can lower
certain shufflevectors to an insertps instruction:
When most of the shufflevector result's elements come from one vector (and
keep their index), and one element comes from another vector or a memory
operand.
Added tests for insertps optimizations on shufflevector.
Added support and tests for v4i32 vector optimization.
Reviewers: nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3475
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207291 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, irreducible backedges were ignored. With this commit,
irreducible SCCs are discovered on the fly, and modelled as loops with
multiple headers.
This approximation specifies the headers of irreducible sub-SCCs as its
entry blocks and all nodes that are targets of a backedge within it
(excluding backedges within true sub-loops). Block frequency
calculations act as if we insert a new block that intercepts all the
edges to the headers. All backedges and entries to the irreducible SCC
point to this imaginary block. This imaginary block has an edge (with
even probability) to each header block.
The result is now reasonable enough that I've added a number of
testcases for irreducible control flow. I've outlined in
`BlockFrequencyInfoImpl.h` ways to improve the approximation.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207286 91177308-0d34-0410-b5e6-96231b3b80d8
This adds support for an -mattr option to the gold plugin and to llvm-lto. This
allows the caller to specify details of the subtarget architecture, like +aes,
or +ssse3 on x86. Note that this requires a change to the include/llvm-c/lto.h
interface: it adds a function lto_codegen_set_attr and it increments the
version of the interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207279 91177308-0d34-0410-b5e6-96231b3b80d8
Consider this use from the new testcase:
LSR Use: Kind=ICmpZero, Offsets={0}, widest fixup type: i32
reg({1000,+,-1}<nw><%for.body>)
-3003 + reg({3,+,3}<nw><%for.body>)
-1001 + reg({1,+,1}<nuw><nsw><%for.body>)
-1000 + reg({0,+,1}<nw><%for.body>)
-3000 + reg({0,+,3}<nuw><%for.body>)
reg({-1000,+,1}<nw><%for.body>)
reg({-3000,+,3}<nsw><%for.body>)
This is the last use we consider for a solution in SolveRecurse, so CurRegs is
a large set. (CurRegs is the set of registers that are needed by the
previously visited uses in the in-progress solution.)
ReqRegs is {
{3,+,3}<nw><%for.body>,
{1,+,1}<nuw><nsw><%for.body>
}
This is the intersection of the regs used by any of the formulas for the
current use and CurRegs.
Now, the code requires a formula to contain *all* these regs (the comment is
simply wrong), otherwise the formula is immediately disqualified. Obviously,
no formula for this use contains two regs so they will all get disqualified.
The fix modifies the check to allow the formula in this case. The idea is
that neither of these formulae is introducing any new registers which is the
point of this early pruning as far as I understand.
In terms of set arithmetic, we now allow formulas whose used regs are a subset
of the required regs not just the other way around.
There are few more loops in the test-suite that are now successfully LSRed. I
have benchmarked those and found very minimal change.
Fixes <rdar://problem/13965777>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207271 91177308-0d34-0410-b5e6-96231b3b80d8
buildbot - do not insert debug intrinsics before phi nodes.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207269 91177308-0d34-0410-b5e6-96231b3b80d8
This intrinsic is no longer needed with the new @llvm.arm.hint(i32) intrinsic
which provides a generic, extensible manner for adding hint instructions. This
functionality can now be represented as @llvm.arm.hint(i32 5).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207246 91177308-0d34-0410-b5e6-96231b3b80d8
override the default cold threshold.
When we use command line argument to set the inline threshold, the default
cold threshold will not be used. This is in line with how we use
OptSizeThreshold. When we want a higher threshold for all functions, we
do not have to set both inline threshold and cold threshold.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207245 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the llvm.arm.hint(i32) intrinsic that can be used to inject hints into
the instruction stream. This is particularly useful for generating IR from a
compiler where the user may inject an intrinsic (e.g. __yield). These are then
pattern substituted into the correct instruction which already existed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207242 91177308-0d34-0410-b5e6-96231b3b80d8
Debug info: Let dbg.values inserted by LowerDbgDeclare inherit the location
of the dbg.value. This gets rid of tons of redundant variable DIEs in
subscopes.
rdar://problem/14874886, rdar://problem/16679936
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207236 91177308-0d34-0410-b5e6-96231b3b80d8
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207235 91177308-0d34-0410-b5e6-96231b3b80d8
There's no need for local symbols to go through the GOT, in fact it seems GNU ld is not even emitting GOT entries for local symbols and will error out when trying to resolve a GOT relocation for a local symbol.
This bug triggers when bootstrapping clang on AArch64 Linux with -fPIC and the ARM64 backend. The AArch64 backend is not affected.
With this commit it's now possible to bootstrap clang on AArch64 Linux with the ARM64 backend (-fPIC, -O3).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207226 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is a supplement of implementing predicate of FP, enabling aarch64 backend
no-fp tests on arm64 target for verification. During this, one bug is exposed and
fixed by this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207215 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the concepts of "forward" and "general" mass distributions, which
was wrong. The split might have made sense in an early version of the
algorithm, but it's definitely wrong now.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207195 91177308-0d34-0410-b5e6-96231b3b80d8
Strip irreducible testcases to pure control flow. The function calls
made the branch weights more believable but cluttered it up a lot.
There isn't going to be any constant analysis here, so just use dumb
branch logic to clarify the important parts.
<rdar://problem/14292693>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207192 91177308-0d34-0410-b5e6-96231b3b80d8
AllocaInst that was missing in one location.
Debug info for optimized code: Support variables that are on the stack and
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine.ll testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207165 91177308-0d34-0410-b5e6-96231b3b80d8
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207143 91177308-0d34-0410-b5e6-96231b3b80d8
of the dbg.value. This gets rid of tons of redundant variable DIEs in
subscopes.
rdar://problem/14874886, rdar://problem/16679936
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207135 91177308-0d34-0410-b5e6-96231b3b80d8
described by DBG_VALUEs during their lifetime.
Previously, when a variable was at a FrameIndex for any part of its
lifetime, this would shadow all other DBG_VALUEs and only a single
fbreg location would be emitted, which in fact is only valid for a small
range and not the entire lexical scope of the variable. The included
dbg-value-const-byref testcase demonstrates this.
This patch fixes this by
Local
- emitting dbg.value intrinsics for allocas that are passed by reference
- dropping all dbg.declares (they are now fully lowered to dbg.values)
SelectionDAG
- renamed constructors for SDDbgValue for better readability.
- fix UserValue::match() to handle indirect values correctly
- not inserting an MMI table entries for dbg.values that describe allocas.
- lowering dbg.values that describe allocas into *indirect* DBG_VALUEs.
CodeGenPrepare
- leaving dbg.values for an alloca were they are (see comment)
Other
- regenerated/updated instcombine-intrinsics testcase and included source
rdar://problem/16679879
http://reviews.llvm.org/D3374
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207130 91177308-0d34-0410-b5e6-96231b3b80d8
This patch:
- Adds two new X86 builtin intrinsics ('int_x86_rdtsc' and
'int_x86_rdtscp') as GCCBuiltin intrinsics;
- Teaches the backend how to lower the two new builtins;
- Introduces a common function to lower READCYCLECOUNTER dag nodes
and the two new rdtsc/rdtscp intrinsics;
- Improves (and extends) the existing x86 test 'rdtsc.ll'; now test 'rdtsc.ll'
correctly verifies that both READCYCLECOUNTER and the two new intrinsics
work fine for both 64bit and 32bit Subtargets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207127 91177308-0d34-0410-b5e6-96231b3b80d8