This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304864 91177308-0d34-0410-b5e6-96231b3b80d8
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
This ensures that we can emit the ObjC Image Info structure on COFF and
ELF as well. The frontend already would attempt to emit this
information but would get dropped when generating assembly or an object
file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304736 91177308-0d34-0410-b5e6-96231b3b80d8
This patch provides a means to specify section-names for global variables,
functions and static variables, using #pragma directives.
This feature is only defined to work sensibly for ELF targets.
One can specify section names as:
#pragma clang section bss="myBSS" data="myData" rodata="myRodata" text="myText"
One can "unspecify" a section name with empty string e.g.
#pragma clang section bss="" data="" text="" rodata=""
Reviewers: Roger Ferrer, Jonathan Roelofs, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D33413
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304704 91177308-0d34-0410-b5e6-96231b3b80d8
This is a version of D32090 that unifies all of the
`getInstrProf*SectionName` helper functions. (Note: the build failures
which D32090 would have addressed were fixed with r300352.)
We should unify these helper functions because they are hard to use in
their current form. E.g we recently introduced more helpers to fix
section naming for COFF files. This scheme doesn't totally succeed at
hiding low-level details about section naming, so we should switch to an
API that is easier to maintain.
This is not an NFC commit because it fixes llvm-cov's testing support
for COFF files (this falls out of the API change naturally). This is an
area where we lack tests -- I will see about adding one as a follow up.
Testing: check-clang, check-profile, check-llvm.
Differential Revision: https://reviews.llvm.org/D32097
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300381 91177308-0d34-0410-b5e6-96231b3b80d8
This is an ELF-specific thing that adds SHF_LINK_ORDER to the global's section
pointing to the metadata argument's section. The effect of that is a reverse dependency
between sections for the linker GC.
!associated does not change the behavior of global-dce. The global
may also need to be added to llvm.compiler.used.
Since SHF_LINK_ORDER is per-section, !associated effectively enables
fdata-sections for the affected globals, the same as comdats do.
Differential Revision: https://reviews.llvm.org/D29104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298157 91177308-0d34-0410-b5e6-96231b3b80d8
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296190 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Some compilers, including MSVC and Clang, allow linker options to be specified in source files. In the legacy LTO API, there is a getLinkerOpts() method that returns linker options for the bitcode module being processed. This change adds that method to the new API, so that the COFF linker can get the right linker options when using the new LTO API.
Reviewers: pcc, ruiu, mehdi_amini, tejohnson
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D29207
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293950 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r290694. It broke sanitizer tests on Win64. I'll
probably bring this back, but the jump tables will just live in .text
like they do for MSVC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290714 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We were already using 32-bit jump table entries, but this was a
consequence of the default PIC model on Win64, and not an intentional
design decision. This patch ensures that we always use 32-bit label
difference jump table entries on Win64 regardless of the PIC model. This
is a good idea because it saves executable size and object file size.
Moving the jump tables to .rdata cleans up the disassembled object code
and reduces the available ROP targets, but it requires adding one more
RIP-relative lea to the code. COFF doesn't have relocations to express
the difference between two arbitrary symbols, so we can't use the jump
table label in the label difference like we do elsewhere.
Fixes PR31488
Reviewers: majnemer, compnerd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28141
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290694 91177308-0d34-0410-b5e6-96231b3b80d8
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289784 91177308-0d34-0410-b5e6-96231b3b80d8
No-one actually had a mangler handy when calling this function, and
getSymbol itself went most of the way towards getting its own mangler
(with a local TLOF variable) so forcing all callers to supply one was
just extra complication.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287645 91177308-0d34-0410-b5e6-96231b3b80d8
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285006 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The original implementation is in r261607, which was reverted in r269726 to accomendate the ProfileSummaryInfo analysis pass. The new implementation:
1. add a new metadata for function section prefix
2. query against ProfileSummaryInfo in CGP to set the correct section prefix for each function
3. output the section prefix set by CGP
Reviewers: davidxl, eraman
Subscribers: vsk, llvm-commits
Differential Revision: https://reviews.llvm.org/D24989
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284533 91177308-0d34-0410-b5e6-96231b3b80d8
TargetMachine," as it's causing sanitizer/memory issues until I
can track down this set.
This reverts commit r284203
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284252 91177308-0d34-0410-b5e6-96231b3b80d8
sink the current behavior into the callers and sink
TargetMachine::getNameWithPrefix into TargetMachine::getSymbol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284203 91177308-0d34-0410-b5e6-96231b3b80d8
TargetMachine::getNameWithPrefix and inline the result into the singular
caller." and "Remove more guts of TargetMachine::getNameWithPrefix and
migrate one check to the TLOF mach-o version." temporarily until I can
get the whole call migrated out of the TargetMachine as we could hit
places where TLOF isn't valid.
This reverts commits r281981 and r281983.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282028 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, such section would be marked as SHT_PROGBITS which
makes it impossible to use an initialized C variable declaration
to emit an (allocated) ELF note. The new behavior is also consistent
with ELF assembly parser.
Differential Revision: https://reviews.llvm.org/D24692
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282010 91177308-0d34-0410-b5e6-96231b3b80d8
Group" sections while lowering. In particular, for ELF sections this is
useful for creating function-specific groups that get merged into the
same named section.
Also use const Twine& instead of StringRef for the getELF functions
while we're here.
Differential Revision: http://reviews.llvm.org/D21743
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274336 91177308-0d34-0410-b5e6-96231b3b80d8
The main issue here is that the "thumb" flag wasn't set for some of these
sections, making MSVC's link.exe fails to correctly relocate code
against the symbols inside these sections. link.exe could fail for
instance with the "fixup is not aligned for target 'XX'" error. If
linking doesn't fail, the relocation process goes wrong in the end and
invalid code is generated by the linker.
This patch adds Thumb/ARM information so that the right flags are set
on COFF/Windows.
Patch by Adrien Guinet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273880 91177308-0d34-0410-b5e6-96231b3b80d8
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272709 91177308-0d34-0410-b5e6-96231b3b80d8
Since r207518 they are printed exactly like non-hidden stubs on x86 and
since r207517 on ARM.
This means we can use a single set for all stubs in those platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269776 91177308-0d34-0410-b5e6-96231b3b80d8
This code currently relies on static methods in ProfileSummary to determine whether a function is hot or unlikley. I am refactoring the ProfileSummary code and these methods will be removed. As discussed offline, the right way to re-introduce this is to add a pass to annotate functions with unlikely/hot hints and use the hints to determine the prefix here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269726 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds a unique ID to the COFF section uniquing map, similar to the
one we have for ELF. The unique id is not currently exposed via the
assembler because we don't have a use case for it yet. Users generally
create .pdata with the .seh_* family of directives, and the assembler
internally needs to produce .pdata and .xdata sections corresponding to
the code section.
The association between .text sections and the assembler-created .xdata
and .pdata sections is maintained as an ID field of MCSectionCOFF. The
CFI-related sections are created with the given unique ID, so if more
code is added to the same text section, we can find and reuse the CFI
sections that were already created.
Reviewers: majnemer, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19376
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268331 91177308-0d34-0410-b5e6-96231b3b80d8
The relative vtable ABI (PR26723) needs PLT relocations to refer to virtual
functions defined in other DSOs. The unnamed_addr attribute means that the
function's address is not significant, so we're allowed to substitute it
with the address of a PLT entry.
Also includes a bonus feature: addends for COFF image-relative references.
Differential Revision: http://reviews.llvm.org/D17938
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@267211 91177308-0d34-0410-b5e6-96231b3b80d8
We supported creating mergeable constant pool entries for smaller
constants but not for 32-byte AVX constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261584 91177308-0d34-0410-b5e6-96231b3b80d8
COFF doesn't have sections with mergeable contents. Instead, each
constant pool entry ends up in a COMDAT section. The linker, when
choosing between COMDAT sections, doesn't choose the max alignment of
the two sections. You just get whatever alignment was on the section.
If one constant needed a higher alignment in one object file from
another one, then we will get into trouble if the linker chooses the
lower alignment one.
Instead, lets promote the alignment of the constant pool entry to make
sure we don't use an under aligned constant with an instruction which
assumed otherwise.
This fixes PR26680.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261462 91177308-0d34-0410-b5e6-96231b3b80d8
covmap needs to created as non allocatable, but not with
SHT_NOTE. The latter was needed to workaround a problem
of BFD linker with gc, which is no longer needed. (A more
proper longer term fix requires changing FE driver to force
referencing the section using linker script).
Differential Revision: http://reviews.llvm.org/D17309
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261228 91177308-0d34-0410-b5e6-96231b3b80d8
Coverage mapping data is not referenced by runtime, and they won't be dumped
into profile data. There is no need to allocate memory for covmap sections.
A good side effect of this change is that the coverage map data won't be mistakenly
garbage collected by the linker (for Gold linker only, BFD linker has an issue where the a bug is filed).
Tested with clang build with instrumentation and -fcoverage-mapping and linker GC. The size of
covmap section is ~17.6M so the text segment size will be reduced by this amount with this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257781 91177308-0d34-0410-b5e6-96231b3b80d8