Summary:
The previous form, taking opcode and type, is moved to an internal
helper and the new form, taking an instruction, is a wrapper around this
helper.
Although this is a slight cleanup on its own, the main motivation is to
refactor the constant folding API to ease migration to opaque pointers.
This will be follow-up work.
Reviewers: eddyb
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D16383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@258391 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
At least for CoreCLR, a catchpad which immediately executes an
`unreachable` instruction indicates that the exception can never have a
matching type, and so such catchpads can be removed, and so can their
catchswitches if the catchswitch becomes empty.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15846
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256809 91177308-0d34-0410-b5e6-96231b3b80d8
In conditional store merging, we were creating PHIs when we didn't
need to. If the value to be predicated isn't defined in the block
we're predicating, then it doesn't need a PHI at all (because we only
deal with triangles and diamonds, any value not in the predicated BB
must dominate the predicated BB).
This fixes a large code size increase in some benchmarks in a popular embedded benchmark suite.
Now with a fix (and fixed tests) for the conformance issue seen in Chromium.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255767 91177308-0d34-0410-b5e6-96231b3b80d8
This is the last general step to allow more IR-level speculation with a safety harness in place in CodeGenPrepare.
The intent is to restore the behavior enabled by:
http://reviews.llvm.org/rL228826
but prevent bad performance such as:
https://llvm.org/bugs/show_bug.cgi?id=24818
Earlier patches in this sequence:
D12882 (disable SimplifyCFG speculation for expensive instructions)
D13297 (have CGP despeculate expensive ops)
D14630 (have CGP despeculate special versions of cttz/ctlz)
As shown in the test cases, we only have two instructions currently affected: ctz for some x86 and fdiv generally.
Allowing exactly one expensive instruction is a bit of a hack, but it lines up with what is currently implemented
in CGP. If we make the despeculation more general in CGP, we can make the speculation here more liberal.
A follow-up patch will adjust the cost for sqrt and possibly other typically expensive math intrinsics (currently
everything is cheap by default). GPU targets would likely want to override those expensive default costs (just as
they probably should already override the cost of div/rem) because just about any math is cheaper than control-flow
on those targets.
Differential Revision: http://reviews.llvm.org/D15213
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255660 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r255489.
It causes test failures in Chromium and does not appear to respect the
AlternativeV parameter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255562 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255522 91177308-0d34-0410-b5e6-96231b3b80d8
In conditional store merging, we were creating PHIs when we didn't
need to. If the value to be predicated isn't defined in the block
we're predicating, then it doesn't need a PHI at all (because we only
deal with triangles and diamonds, any value not in the predicated BB
must dominate the predicated BB).
This fixes a large code size increase in some benchmarks in a popular embedded benchmark suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255489 91177308-0d34-0410-b5e6-96231b3b80d8
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255422 91177308-0d34-0410-b5e6-96231b3b80d8
This is fix for PR24059.
When we are hoisting instruction above some condition it may turn out
that metadata on this instruction was control dependant on the condition.
This metadata becomes invalid and we need to drop it.
This patch should cover most obvious places of speculative execution (which
I have found by greping isSafeToSpeculativelyExecute). I think there are more
cases but at least this change covers the severe ones.
Differential Revision: http://reviews.llvm.org/D14398
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252604 91177308-0d34-0410-b5e6-96231b3b80d8
Some implicit ilist iterator conversions have crept back into Analysis,
Transforms, Hexagon, and llvm-stress. This removes them.
I'll commit a patch immediately after this to disallow them (in a
separate patch so that it's easy to revert if necessary).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252371 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change makes the `isImpliedCondition` interface similar to the rest
of the functions in ValueTracking (in that it takes a DataLayout,
AssumptionCache etc.). This is an NFC, intended to make a later diff
less noisy.
Depends on D14369
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14391
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252333 91177308-0d34-0410-b5e6-96231b3b80d8
We were correctly skipping dbginfo intrinsics and terminators, but the initial bailout wasn't, causing it to bail out on almost any block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252152 91177308-0d34-0410-b5e6-96231b3b80d8
We can often end up with conditional stores that cannot be speculated. They can come from fairly simple, idiomatic code:
if (c & flag1)
*a = x;
if (c & flag2)
*a = y;
...
There is no dominating or post-dominating store to a, so it is not legal to move the store unconditionally to the end of the sequence and cache the intermediate result in a register, as we would like to.
It is, however, legal to merge the stores together and do the store once:
tmp = undef;
if (c & flag1)
tmp = x;
if (c & flag2)
tmp = y;
if (c & flag1 || c & flag2)
*a = tmp;
The real power in this optimization is that it allows arbitrary length ladders such as these to be completely and trivially if-converted. The typical code I'd expect this to trigger on often uses binary-AND with constants as the condition (as in the above example), which means the ending condition can simply be truncated into a single binary-AND too: 'if (c & (flag1|flag2))'. As in the general case there are bitwise operators here, the ladder can often be optimized further too.
This optimization involves potentially increasing register pressure. Even in the simplest case, the lifetime of the first predicate is extended. This can be elided in some cases such as using binary-AND on constants, but not in the general case. Threading 'tmp' through all branches can also increase register pressure.
The optimization as in this patch is enabled by default but kept in a very conservative mode. It will only optimize if it thinks the resultant code should be if-convertable, and additionally if it can thread 'tmp' through at least one existing PHI, so it will only ever in the worst case create one more PHI and extend the lifetime of a predicate.
This doesn't trigger much in LNT, unfortunately, but it does trigger in a big way in a third party test suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@252051 91177308-0d34-0410-b5e6-96231b3b80d8
The most common use case is when eliminating redundant range checks in an example like the following:
c = a[i+1] + a[i];
Note that all the smarts of the transform (the implication engine) is already in ValueTracking and is tested directly through InstructionSimplify.
Differential Revision: http://reviews.llvm.org/D13040
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251596 91177308-0d34-0410-b5e6-96231b3b80d8
CatchReturnInst has side-effects: it runs a destructor. This destructor
could conceivably run forever/call exit/etc. and should not be removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251461 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Currently SimplifyResume can convert an invoke instruction to a call instruction if its landing pad is trivial. In practice we could have several invoke instructions with trivial landing pads and share a common rethrow block, and in the common rethrow block, all the landing pads join to a phi node. The patch extends SimplifyResume to check the phi of landing pad and their incoming blocks. If any of them is trivial, remove it from the phi node and convert the invoke instruction to a call instruction.
Reviewers: hfinkel, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13718
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251061 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyTerminatorOnSelect didn't consider the possibility that the
condition might be related to one of PHI nodes.
This fixes PR25267.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250922 91177308-0d34-0410-b5e6-96231b3b80d8
Turns out this approach is buggy. In discussion about follow on work, Sanjoy pointed out that we could be subject to circular logic problems.
Consider:
if (i u< L) leave()
if ((i + 1) u< L) leave()
print(a[i] + a[i+1])
If we know that L is less than UINT_MAX, we could possible prove (in a control dependent way) that i + 1 does not overflow. This gives us:
if (i u< L) leave()
if ((i +nuw 1) u< L) leave()
print(a[i] + a[i+1])
If we now do the transform this patch proposed, we end up with:
if ((i +nuw 1) u< L) leave_appropriately()
print(a[i] + a[i+1])
That would be a miscompile when i==-1. The problem here is that the control dependent nuw bits got used to prove something about the first condition. That's obviously invalid.
This won't happen today, but since I plan to enhance LVI/CVP with exactly that transform at some point in the not too distant future...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250430 91177308-0d34-0410-b5e6-96231b3b80d8
If we have a series of branches which are all unlikely to fail, we can possibly combine them into a single check on the fastpath combined with a bit of dispatch logic on the slowpath. We don't want to do this unconditionally since it requires speculating instructions past a branch, but if the profiling metadata on the branch indicates profitability, this can reduce the number of checks needed along the fast path.
The canonical example this is trying to handle is removing the second bounds check implied by the Java code: a[i] + a[i+1]. Note that it can currently only do so for really simple conditions and the values of a[i] can't be used anywhere except in the addition. (i.e. the load has to have been sunk already and not prevent speculation.) I plan on extending this transform over the next few days to handle alternate sequences.
Differential Revision: http://reviews.llvm.org/D13070
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250343 91177308-0d34-0410-b5e6-96231b3b80d8
Continuing the work from last week to remove implicit ilist iterator
conversions. First related commit was probably r249767, with some more
motivation in r249925. This edition gets LLVMTransformUtils compiling
without the implicit conversions.
No functional change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250142 91177308-0d34-0410-b5e6-96231b3b80d8
The most important part required to make clang
devirtualization works ( ͡°͜ʖ ͡°).
The code is able to find non local dependencies, but unfortunatelly
because the caller can only handle local dependencies, I had to add
some restrictions to look for dependencies only in the same BB.
http://reviews.llvm.org/D12992
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249196 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Factor the code that rewrites invokes to calls and rewrites WinEH
terminators to their "unwind to caller" equivalents into a helper in
Utils/Local, and use it in the three places I'm aware of that need to do
this.
Reviewers: andrew.w.kaylor, majnemer, rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248677 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow up to http://reviews.llvm.org/D11995 implementing the suggestion by Hans.
If we know some of the bits of the value being switched on, we know that the maximum number of unique cases covers the unknown bits. This allows to eliminate switch defaults for large integers (i32) when most bits in the value are known.
Note that I had to make the transform contingent on not having any dead cases. This is conservatively correct with the old code, but required for the new code since we might have a dead case which varies one of the known bits. Counting that towards our number of covering cases would be bad. If we do have dead cases, we'll eliminate them first, then revisit the possibly dead default.
Differential Revision: http://reviews.llvm.org/D12497
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247309 91177308-0d34-0410-b5e6-96231b3b80d8
As Sanjoy pointed out over in http://reviews.llvm.org/D11819, a switch on an icmp should always be able to become a branch instruction. This patch generalizes that notion slightly to prove that the default case of a switch is unreachable if the cases completely cover all possible bit patterns in the condition. Once that's done, the switch to branch conversion kicks in just fine.
Note: Duplicate case values are disallowed by the LangRef and verifier.
Differential Revision: http://reviews.llvm.org/D11995
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246125 91177308-0d34-0410-b5e6-96231b3b80d8
and make it always preserve debug locations, since all callers wanted this
behavior anyway.
This is addressing a post-commit review feedback for r245589.
NFC (inside the LLVM tree).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245622 91177308-0d34-0410-b5e6-96231b3b80d8
Instruction::dropUnknownMetadata(KnownSet) is supposed to preserve all
metadata in KnownSet, but the condition for DebugLocs was inverted.
Most users of dropUnknownMetadata() actually worked around this by not
adding LLVMContext::MD_dbg to their list of KnowIDs.
This is now made explicit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245589 91177308-0d34-0410-b5e6-96231b3b80d8
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244260 91177308-0d34-0410-b5e6-96231b3b80d8