Shadow checks are disabled and memory loads always produce fully initialized
values in functions that don't have a sanitize_memory attribute. Value and
argument shadow is propagated as usual.
This change also updates blacklist behaviour to match the above.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176247 91177308-0d34-0410-b5e6-96231b3b80d8
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176075 91177308-0d34-0410-b5e6-96231b3b80d8
This patch makes asan instrument memory accesses with unusual sizes (e.g. 5 bytes or 10 bytes), e.g. long double or
packed structures.
Instrumentation is done with two 1-byte checks
(first and last bytes) and if the error is found
__asan_report_load_n(addr, real_size) or
__asan_report_store_n(addr, real_size)
is called.
Also, call these two new functions in memset/memcpy
instrumentation.
asan-rt part will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175507 91177308-0d34-0410-b5e6-96231b3b80d8
It is way too slow. Change the default option value to 0.
Always do exact shadow propagation for unsigned ICmp with constants, it is
cheap (under 1% cpu time) and required for correctness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173682 91177308-0d34-0410-b5e6-96231b3b80d8
Only for integers, pointers, and vectors of those. No floats.
Instrumentation seems very heavy, and may need to be replaced
with some approximation in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173452 91177308-0d34-0410-b5e6-96231b3b80d8
Origin alignment is as high as the alignment of the corresponding application
location, but never less than 4.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171110 91177308-0d34-0410-b5e6-96231b3b80d8
This changes adds shadow and origin propagation for unknown intrinsics
by examining the arguments and ModRef behaviour. For now, only 3 classes
of intrinsics are handled:
- those that look like simple SIMD store
- those that look like simple SIMD load
- those that don't have memory effects and look like arithmetic/logic/whatever
operation on simple types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170530 91177308-0d34-0410-b5e6-96231b3b80d8
When ASan replaces <alloca instruction> with
<offset into a common large alloca>, it should also patch
llvm.dbg.declare calls and replace debug info descriptors to mark
that we've replaced alloca with a value that stores an address
of the user variable, not the user variable itself.
See PR11818 for more context.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169984 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of unconditionally storing origin with every application store,
only do this when the shadow of the stored value is != 0.
This change also delays instrumentation of stores until after the walk over
function's instructions, because adding new basic blocks confuses InstVisitor.
We only keep 1 origin value per 4 bytes of application memory. This change
fixes the bug when a store of a single clean byte wiped the origin for the
whole 4-byte area.
Since stores of uninitialized values are relatively uncommon, this change
improves performance of track-origins mode by 5% median and by up to 47% on
specs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169490 91177308-0d34-0410-b5e6-96231b3b80d8
This change ensures that shadow memory accesses have the same alignment
as corresponding app memory accesses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168880 91177308-0d34-0410-b5e6-96231b3b80d8
original commit msg:
MemoryBuiltins: add support to determine the size of strdup'ed non-constant strings
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160751 91177308-0d34-0410-b5e6-96231b3b80d8
Make sure we do not emit index computations with NSW flags so that we dont get an undef value if the GEP overflows
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160589 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out that ASan relied on the at-the-end block insertion order to
(purely by happenstance) disable some LLVM optimizations, which in turn
start firing when the ordering is made more "normal". These
optimizations in turn merge many of the instrumentation reporting calls
which breaks the return address based error reporting in ASan.
We're looking at several different options for fixing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160256 91177308-0d34-0410-b5e6-96231b3b80d8
This is particularly useful to the backend code generators which try to
process things in the incoming function order.
Also, cleanup some uses of IRBuilder to be a bit simpler and more clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160254 91177308-0d34-0410-b5e6-96231b3b80d8
functionality test.
In general, unless the functionality is substantially separated, we
should lump more basic testing into this file. The test running
infrastructure likes having a few test files with more comprehensive
testing within them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160253 91177308-0d34-0410-b5e6-96231b3b80d8
- don't isntrument reads from constant globals.
Saves ~1.5% of instrumented instructions on CPU2006
(counting static instructions, not their execution).
- don't insrument reads from vtable (which is a global constant too).
Saves ~5%.
I did not measure the run-time impact of this,
but it is certainly non-negative.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154444 91177308-0d34-0410-b5e6-96231b3b80d8
a write to the same temp follows in the same BB.
Also add stats printing.
On Spec CPU2006 this optimization saves roughly 4% of instrumented reads
(which is 3% of all instrumented accesses):
Writes : 161216
Reads : 446458
Reads-before-write: 18295
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154418 91177308-0d34-0410-b5e6-96231b3b80d8