This replaces a hand written copy loop with a call to memcpy for both zext and sext.
For sext, it replaces multiple if/else blocks propagating sign information forward. Now we just do a copy, a sign extension on the last copied word, a memset, and clearUnusedBits.
Differential Revision: https://reviews.llvm.org/D32417
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301201 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds an in place version of ashr to match lshr and shl which were recently added.
I've tried to make this similar to the lshr code with additions to handle the sign extension. I've also tried to do this with less if checks than the current ashr code by sign extending the original result to a word boundary before doing any of the shifting. This removes a lot of the complexity of determining where to fill in sign bits after the shifting.
Differential Revision: https://reviews.llvm.org/D32415
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301198 91177308-0d34-0410-b5e6-96231b3b80d8
Previously single word would always return 0 regardless of the original sign. Multi word would return all 0s or all 1s based on the original sign. Now single word takes into account the sign as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301159 91177308-0d34-0410-b5e6-96231b3b80d8
The current code is trying to be clever with shifts to avoid needing to clear unused bits. But it looks like the compiler is unable to optimize out the unused bit handling in the APInt constructor. Given this its better to just use SignExtend64 and have more readable code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301133 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r301105, 4, 3 and 1, as a follow up of the previous
revert, which broke even more bots.
For reference:
Revert "[APInt] Use operator<<= where possible. NFC"
Revert "[APInt] Use operator<<= instead of shl where possible. NFC"
Revert "[APInt] Use ashInPlace where possible."
PR32754.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301111 91177308-0d34-0410-b5e6-96231b3b80d8
For single word, shift by BitWidth was always returning 0, but for multiword it was based on original sign. Now single word matches multi word.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301094 91177308-0d34-0410-b5e6-96231b3b80d8
The unused upper bits are guaranteed to be 0 so we don't need to worry about accidentally counting them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301091 91177308-0d34-0410-b5e6-96231b3b80d8
Currently sle and ule have to call slt/ult and eq to get the proper answer. This results in extra code for both calls and additional scans of multiword APInts.
This patch replaces slt/ult with a compareSigned/compare that can return -1, 0, or 1 so we can cover all the comparison functions with a single call.
While I was there I removed the activeBits calls and other checks at the start of the slow part of ult. Both of the activeBits calls potentially scan through each of the APInts separately. I can't imagine that's any better than just scanning them in parallel and doing the compares. Now we just share the code with tcCompare.
These changes seem to be good for about a 7-8k reduction on the size of the opt binary on my local x86-64 build.
Differential Revision: https://reviews.llvm.org/D32339
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300995 91177308-0d34-0410-b5e6-96231b3b80d8
This question comes up in many places in SimplifyDemandedBits. This makes it easy to ask without allocating additional temporary APInts.
The BitVector class provides a similar functionality through its (IMHO badly named) test(const BitVector&) method. Though its output polarity is reversed.
I've provided one example use case in this patch. I plan to do more as a follow up.
Differential Revision: https://reviews.llvm.org/D32258
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300851 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This is a simple question we should be able to answer without creating a temporary to hold the AND result. We can also get an early out as soon as we find a word that intersects.
Reviewers: RKSimon, hans, spatel, davide
Reviewed By: hans, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32253
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300812 91177308-0d34-0410-b5e6-96231b3b80d8
This patch uses lshrInPlace to replace code where the object that lshr is called on is being overwritten with the result.
This adds an lshrInPlace(const APInt &) version as well.
Differential Revision: https://reviews.llvm.org/D32155
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300566 91177308-0d34-0410-b5e6-96231b3b80d8
This merges the two different multiword shift right implementations into a single version located in tcShiftRight. lshrInPlace now calls tcShiftRight for the multiword case.
I retained the memmove fast path from lshrInPlace and used a memset for the zeroing. The for loop is basically tcShiftRight's implementation with the zeroing and the intra-shift of 0 removed.
Differential Revision: https://reviews.llvm.org/D32114
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300503 91177308-0d34-0410-b5e6-96231b3b80d8
This was throwing an assert because we determined the intra-word shift amount by subtracting the size of the full word shift from the total shift amount. But we failed to account for the fact that we clipped the full word shifts by total words first. To fix this just calculate the intra-word shift as the remainder of dividing by bits per word.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300405 91177308-0d34-0410-b5e6-96231b3b80d8
Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300252 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
APInt is currently implemented with an unsigned BitWidth field first and then a uint_64/pointer union. Due to the 64-bit size of the union there is a hole after the bitwidth.
Putting the union first allows the class to be packed. Making it 12 bytes instead of 16 bytes. An APSInt goes from 20 bytes to 16 bytes.
This shows a 4k reduction on the size of the opt binary on my local x86-64 build. So this enables some other improvement to the code as well.
Reviewers: dblaikie, RKSimon, hans, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D32001
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300171 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is one step to attempt to unify the main APInt interface and the tc functions used by APFloat.
This patch adds a WordType to APInt and uses that in all the tc functions. I've added temporary typedefs to APFloat to alias it to integerPart to keep the patch size down. I'll work on removing that in a future patch.
In future patches I hope to reuse the tc functions to implement some of the main APInt functionality.
I may remove APINT_ from BITS_PER_WORD and WORD_SIZE constants so that we don't have the repetitive APInt::APINT_ externally.
Differential Revision: https://reviews.llvm.org/D31523
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299341 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
GreatestComonDivisor currently makes a copy of both its inputs. Then in the loop we do one move and two copies, plus any allocation the urem call does.
This patch changes it to take its inputs by value so that we can do a move of any rvalue inputs instead of copying. Then in the loop we do 3 move assignments and no copies. This way the only possible allocations we have in the loop is from the urem call.
Reviewers: dblaikie, RKSimon, hans
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31572
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299314 91177308-0d34-0410-b5e6-96231b3b80d8
This method is pretty new and probably isn't use much in the code base so this should have a negligible size impact. The OR and XOR operators are already inline.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298870 91177308-0d34-0410-b5e6-96231b3b80d8
This is more consistent with what we do for other operations. This shrinks the opt binary on my build by ~72k.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298858 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not sure if zeroing VAL before writing pVal is really necessary, but at least one other place did it in code.
But by taking the store out of line, this reduces the opt binary by about 20k on my local x86-64 build.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298233 91177308-0d34-0410-b5e6-96231b3b80d8