There is no need to pass on TLI separately to the function. As Eric pointed out
the Target Machine already provides everything we need.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213108 91177308-0d34-0410-b5e6-96231b3b80d8
Break out the arguemnts required from SelectionDAG, so that this function can
also be used by FastISel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212844 91177308-0d34-0410-b5e6-96231b3b80d8
If the tail-callee and caller give the same bits via the same signext/zeroext
attribute then a tail-call should be allowed, since the extension has already
been done by the callee.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188159 91177308-0d34-0410-b5e6-96231b3b80d8
This change came about primarily because of two issues in the existing code.
Niether of:
define i64 @test1(i64 %val) {
%in = trunc i64 %val to i32
tail call i32 @ret32(i32 returned %in)
ret i64 %val
}
define i64 @test2(i64 %val) {
tail call i32 @ret32(i32 returned undef)
ret i32 42
}
should be tail calls, and the function sameNoopInput is responsible. The main
problem is that it is completely symmetric in the "tail call" and "ret" value,
but in reality different things are allowed on each side.
For these cases:
1. Any truncation should lead to a larger value being generated by "tail call"
than needed by "ret".
2. Undef should only be allowed as a source for ret, not as a result of the
call.
Along the way I noticed that a mismatch between what this function treats as a
valid truncation and what the backends see can lead to invalid calls as well
(see x86-32 test case).
This patch refactors the code so that instead of being based primarily on
values which it recurses into when necessary, it starts by inspecting the type
and considers each fundamental slot that the backend will see in turn. For
example, given a pathological function that returned {{}, {{}, i32, {}}, i32}
we would consider each "real" i32 in turn, and ask if it passes through
unchanged. This is much closer to what the backend sees as a result of
ComputeValueVTs.
Aside from the bug fixes, this eliminates the recursion that's going on and, I
believe, makes the bulk of the code significantly easier to understand. The
trade-off is the nasty iterators needed to find the real types inside a
returned value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187787 91177308-0d34-0410-b5e6-96231b3b80d8
1) Disallow 'returned' on parameter that is also 'sret' (no sensible semantics, as far as I can tell).
2) Conservatively disallow tail calls through 'returned' parameters that also are 'zext' or 'sext' (for consistency with treatment of other zero-extending and sign-extending operations in tail call position detection...can be revised later to handle situations that can be determined to be safe).
This is a new attribute that is not yet used, so there is no impact.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180118 91177308-0d34-0410-b5e6-96231b3b80d8
one file where it is called as a static function. Nuke the declaration
and the definition in lib/CodeGen, along with the include of
SelectionDAG.h from this file.
There is no dependency edge from lib/CodeGen to
lib/CodeGen/SelectionDAG, so it isn't valid for a routine in lib/CodeGen
to reference the DAG. There is a dependency from
lib/CodeGen/SelectionDAG on lib/CodeGen. This breaks one violation of
this layering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171842 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
types, as well as int<->ptr casts. This allows us to tailcall functions
with some trivial casts between the call and return (i.e. because the
return types disagree).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157798 91177308-0d34-0410-b5e6-96231b3b80d8
legalizer always use the DAG entry node. This is wrong when the libcall is
emitted as a tail call since it effectively folds the return node. If
the return node's input chain is not the entry (i.e. call, load, or store)
use that as the tail call input chain.
PR12419
rdar://9770785
rdar://11195178
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154370 91177308-0d34-0410-b5e6-96231b3b80d8
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
into Analysis as a standalone function, since there's no need for
it to be in VMCore. Also, update it to use isKnownNonZero and
other goodies available in Analysis, making it more precise,
enabling more aggressive optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146610 91177308-0d34-0410-b5e6-96231b3b80d8
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145714 91177308-0d34-0410-b5e6-96231b3b80d8
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120501 91177308-0d34-0410-b5e6-96231b3b80d8
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108465 91177308-0d34-0410-b5e6-96231b3b80d8