Commit Graph

70 Commits

Author SHA1 Message Date
Hiroshi Inoue
58d2b3aa33 fix typos in comments and error messages; NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307533 91177308-0d34-0410-b5e6-96231b3b80d8
2017-07-10 12:44:25 +00:00
Brendon Cahoon
f2a1839566 [DependenceAnalysis] Make sure base objects are the same when comparing GEPs
The dependence analysis was returning incorrect information when using the GEPs
to compute dependences. The analysis uses the GEP indices under certain
conditions, but was doing it incorrectly when the base objects of the GEP are
aliases, but pointing to different locations in the same array.

This patch adds another check for the base objects. If the base pointer SCEVs
are not equal, then the dependence analysis should fall back on the path
that uses the whole SCEV for the dependence check. This fixes PR33567.

Differential Revision: https://reviews.llvm.org/D34702


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307203 91177308-0d34-0410-b5e6-96231b3b80d8
2017-07-05 21:35:47 +00:00
Francis Visoiu Mistrih
1179b5ee40 BitVector: add iterators for set bits
Differential revision: https://reviews.llvm.org/D32060

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303227 91177308-0d34-0410-b5e6-96231b3b80d8
2017-05-17 01:07:53 +00:00
Matthias Braun
88d207542b Cleanup dump() functions.
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html

For reference:
- Public headers should just declare the dump() method but not use
  LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  LLVM_DUMP_METHOD void MyClass::dump() {
    // print stuff to dbgs()...
  }
  #endif

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293359 91177308-0d34-0410-b5e6-96231b3b80d8
2017-01-28 02:02:38 +00:00
Chandler Carruth
33d568124e [PM] Change the static object whose address is used to uniquely identify
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.

This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.

However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.

And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.

This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.

We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.

Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!

While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.

Differential Revision: https://reviews.llvm.org/D27031

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287783 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-23 17:53:26 +00:00
Benjamin Kramer
8d0d2b6abd Apply clang-tidy's modernize-loop-convert to lib/Analysis.
Only minor manual fixes. No functionality change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273816 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-26 17:27:42 +00:00
Benjamin Kramer
36538ffe93 Apply most suggestions of clang-tidy's performance-unnecessary-value-param
Avoids unnecessary copies. All changes audited & pass tests with asan.
No functional change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272190 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-08 19:09:22 +00:00
Benjamin Kramer
04a303b821 Avoid copies of std::strings and APInt/APFloats where we only read from it
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272126 91177308-0d34-0410-b5e6-96231b3b80d8
2016-06-08 10:01:20 +00:00
Chandler Carruth
b6b8f76650 [PM] Port of the DepndenceAnalysis to the new PM.
Ported DA to the new PM by splitting the former DependenceAnalysis Pass
into a DependenceInfo result type and DependenceAnalysisWrapperPass type
and adding a new PM-style DependenceAnalysis analysis pass returning the
DependenceInfo.

Patch by Philip Pfaffe, most of the review by Justin.

Differential Revision: http://reviews.llvm.org/D18834

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269370 91177308-0d34-0410-b5e6-96231b3b80d8
2016-05-12 22:19:39 +00:00
Brendon Cahoon
4455a132ce [DependenceAnalysis] Refactor uses of getConstantPart. NFC.
Rather than checking for the SCEV type prior to calling
getContantPart, perform the checks in the function. This reduces
the number of places where the checks are needed.

Differential Revision: http://reviews.llvm.org/D19241


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266759 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-19 16:46:57 +00:00
Brendon Cahoon
3188534401 [DependenceAnalysis] Check if result of getConstantPart is null
A seg-fault occurs due to a reference of a null pointer, which is
the value returned by getConstantPart. This function returns
null if the constant part is not found. The code that calls this
function needs to check for the null return value.

Differential Revision: http://reviews.llvm.org/D18718


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265319 91177308-0d34-0410-b5e6-96231b3b80d8
2016-04-04 18:13:18 +00:00
Sanjoy Das
4b892417a6 [SCEV] Add and use SCEVConstant::getAPInt; NFCI
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255921 91177308-0d34-0410-b5e6-96231b3b80d8
2015-12-17 20:28:46 +00:00
Sanjoy Das
6d6e2b5a35 [SCEV] Introduce ScalarEvolution::getOne and getZero.
Summary:
It is fairly common to call SE->getConstant(Ty, 0) or
SE->getConstant(Ty, 1); this change makes such uses a little bit
briefer.

I've refactored the call sites I could find easily to use getZero /
getOne.

Reviewers: hfinkel, majnemer, reames

Subscribers: sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D12947

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248362 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-23 01:59:04 +00:00
Chandler Carruth
9146833fa3 [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247167 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-09 17:55:00 +00:00
Hal Finkel
dd7ef64b29 Fix how DependenceAnalysis calls delinearization
Fix how DependenceAnalysis calls delinearization, mirroring what is done in
Delinearization.cpp (mostly by making sure to call getSCEVAtScope before
delinearizing, and by removing the unnecessary 'Pairs == 1' check).

Patch by Vaivaswatha Nagaraj!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245408 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-19 02:56:36 +00:00
Chandler Carruth
bfe1f1c5a3 [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245193 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-17 02:08:17 +00:00
Chandler Carruth
da5300489f [PM/AA] Simplify the AliasAnalysis interface by removing a wrapper
around a DataLayout interface in favor of directly querying DataLayout.

This wrapper specifically helped handle the case where this no
DataLayout, but LLVM now requires it simplifynig all of this. I've
updated callers to directly query DataLayout. This in turn exposed
a bunch of places where we should have DataLayout readily available but
don't which I've fixed. This then in turn exposed that we were passing
DataLayout around in a bunch of arguments rather than making it readily
available so I've also fixed that.

No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@244189 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-06 02:05:46 +00:00
David Blaikie
4c20864f94 -Wdeprecated-clean: Fix cases of violating the rule of 5 in ways that are deprecated in C++11
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243788 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-31 21:37:09 +00:00
Tobias Grosser
032d56baf2 Move delinearization from SCEVAddRecExpr to ScalarEvolution
The expressions we delinearize do not necessarily have to have a SCEVAddRecExpr
at the outermost level. At this moment, the additional flexibility  is not
exploited in LLVM itself, but in Polly we will soon soonish use this
functionality. For LLVM, this change should not affect existing functionality
(which is covered by test/Analysis/Delinearization/)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240952 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-29 14:42:48 +00:00
Chandler Carruth
1e3557de0d [PM/AA] Hoist the AliasResult enum out of the AliasAnalysis class.
This will allow classes to implement the AA interface without deriving
from the class or referencing an internal enum of some other class as
their return types.

Also, to a pretty fundamental extent, concepts such as 'NoAlias',
'MayAlias', and 'MustAlias' are first class concepts in LLVM and we
aren't saving anything by scoping them heavily.

My mild preference would have been to use a scoped enum, but that
feature is essentially completely broken AFAICT. I'm extremely
disappointed. For example, we cannot through any reasonable[1] means
construct an enum class (or analog) which has scoped names but converts
to a boolean in order to test for the possibility of aliasing.

[1]: Richard Smith came up with a "solution", but it requires class
templates, and lots of boilerplate setting up the enumeration multiple
times. Something like Boost.PP could potentially bundle this up, but
even that would be quite painful and it doesn't seem realistically worth
it. The enum class solution would probably work without the need for
a bool conversion.

Differential Revision: http://reviews.llvm.org/D10495

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240255 91177308-0d34-0410-b5e6-96231b3b80d8
2015-06-22 02:16:51 +00:00
Jingyue Wu
ed0d841f59 [DependenceAnalysis] Extend unifySubscriptType for handling coupled subscript groups.
Summary:
In continuation to an earlier commit to DependenceAnalysis.cpp by jingyue (r222100), the type for all subscripts in a coupled group need to be the same since constraints from one subscript may be propagated to another during testing. During testing, new SCEVs may be created and the operands for these need to be the same.
This patch extends unifySubscriptType() to work on lists of subscript pairs, ensuring a common extended type for all of them.

Test Plan:
Added a test case to NonCanonicalizedSubscript.ll which causes dependence analysis to crash without this fix.

All regression tests pass.

Reviewers: spop, sebpop, jingyue

Reviewed By: jingyue

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9698

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238573 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-29 16:58:08 +00:00
James Molloy
39a7d6e91d [DependenceAnalysis] Fix for PR21585: collectUpperBound triggers asserts
collectUpperBound hits an assertion when the back edge count is wider then the desired type.

If that happens, truncate the backedge count.

Patch by Philip Pfaffe!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237439 91177308-0d34-0410-b5e6-96231b3b80d8
2015-05-15 12:17:22 +00:00
Karthik Bhat
36b589fd8a Fix a memory corruption in Dependency Analysis.
This crash occurs due to memory corruption when trying to update dependency
direction based on Constraints.

This crash was observed during lnt regression of Polybench benchmark test case dynprog.

Review: http://reviews.llvm.org/D8059



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231788 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 14:32:02 +00:00
Karthik Bhat
5f9683f54f Fix a crash in Dependency Analysis.
This crash in Dependency analysis is because we assume here that in case of UsefulGEP
both source and destination have the same number of operands which may not be true.
This incorrect assumption results in crash while populating Pairs. Fix the same.

This crash was observed during lnt regression for code such as-
  struct s{
    int A[10][10];
    int C[10][10][10]; 
  } S;
  void dep_constraint_crash_test(int k,int N)  {
     for( int i=0;i<N;i++)
       for( int j=0;j<N;j++)
         S.A[0][0] = S.C[0][0][k];
  }
Review: http://reviews.llvm.org/D8162



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231784 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 13:31:03 +00:00
Mehdi Amini
529919ff31 DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231740 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 02:37:25 +00:00
NAKAMURA Takumi
9e112cc561 Reformat.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231336 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-05 01:25:19 +00:00
NAKAMURA Takumi
71fa4016bb Revert r231103, "FullDependenceAnalysis: Avoid using the (deprecated in C++11) copy ctor"
It is miscompiled on msc18.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231335 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-05 01:25:12 +00:00
NAKAMURA Takumi
c1899b151e Revert r231104, "unique_ptrify FullDependenceAnalysis::DV", to appease msc18 C2280.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231334 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-05 01:25:06 +00:00
David Blaikie
6e274fd1ab unique_ptrify FullDependenceAnalysis::DV
Making this type a little harder to abuse (see workaround relating to
use of the implicit copy ctor in the prior commit)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231104 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-03 19:20:18 +00:00
David Blaikie
9fefa526a2 FullDependenceAnalysis: Avoid using the (deprecated in C++11) copy ctor
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231103 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-03 19:20:16 +00:00
Benjamin Kramer
d59c5f9a06 Add missing includes. make_unique proliferated everywhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230909 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-01 21:28:53 +00:00
Chandler Carruth
de5df29556 [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226373 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-17 14:16:18 +00:00
Jingyue Wu
ec3cfb00dc [DependenceAnalysis] Allow subscripts of different types
Summary:
Several places in DependenceAnalysis assumes both SCEVs in a subscript pair
share the same integer type. For instance, isKnownPredicate calls
SE->getMinusSCEV(X, Y) which asserts X and Y share the same type. However,
DependenceAnalysis fails to ensure this assumption when producing a subscript
pair, causing tests such as NonCanonicalizedSubscript to crash. With this
patch, DependenceAnalysis runs unifySubscriptType before producing any
subscript pair, ensuring the assumption.

Test Plan:
Added NonCanonicalizedSubscript.ll on which DependenceAnalysis before the fix
crashed because subscripts have different types.

Reviewers: spop, sebpop, jingyue

Reviewed By: jingyue

Subscribers: eliben, meheff, llvm-commits

Differential Revision: http://reviews.llvm.org/D6289

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222100 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-16 16:52:44 +00:00
NAKAMURA Takumi
81ae170379 Reformat partially, where I touched for whitespace changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220773 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-28 11:54:52 +00:00
NAKAMURA Takumi
0f06462959 Untabify and whitespace cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220771 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-28 11:53:30 +00:00
Dylan Noblesmith
7532912545 Analysis: cleanup
Address review comments.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216432 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-26 02:03:40 +00:00
Dylan Noblesmith
8cb2706af6 Revert "Analysis: unique_ptr-ify DependenceAnalysis::collectCoeffInfo"
This reverts commit r216358.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216431 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-26 02:03:38 +00:00
Dylan Noblesmith
97dc647e90 Analysis: unique_ptr-ify DependenceAnalysis::collectCoeffInfo
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216358 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-25 00:28:43 +00:00
Dylan Noblesmith
fe2cc2d8cc Analysis: unique_ptr-ify DependenceAnalysis::depends
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216357 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-25 00:28:39 +00:00
Dylan Noblesmith
75129f6f4c Analysis: take a reference instead of pointer
This parameter is never null.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216356 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-25 00:28:35 +00:00
Sebastian Pop
79facc9e29 remove BasePointer before delinearizing
No functional change is intended: instead of relying on the delinearization to
come up with the base pointer as a remainder of the divisions in the
delinearization, we just compute it from the array access and use that value.
We substract the base pointer from the SCEV to be delinearized and that
simplifies the work of the delinearizer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209692 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-27 22:41:51 +00:00
Sebastian Pop
421b2c571c remove constant terms
The delinearization is needed only to remove the non linearity induced by
expressions involving multiplications of parameters and induction variables.
There is no problem in dealing with constant times parameters, or constant times
an induction variable.

For this reason, the current patch discards all constant terms and multipliers
before running the delinearization algorithm on the terms. The only thing
remaining in the term expressions are parameters and multiply expressions of
parameters: these simplified term expressions are passed to the array shape
recognizer that will not recognize constant dimensions anymore: these will be
recognized as different strides in parametric subscripts.

The only important special case of a constant dimension is the size of elements.
Instead of relying on the delinearization to infer the size of an element,
compute the element size from the base address type. This is a much more precise
way of computing the element size than before, as we would have mixed together
the size of an element with the strides of the innermost dimension.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209691 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-27 22:41:45 +00:00
Sebastian Pop
754e940865 move findArrayDimensions to ScalarEvolution
we do not use the information from SCEVAddRecExpr to compute the shape of the array,
so a better place for this function is in ScalarEvolution.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208456 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-09 22:45:07 +00:00
Sebastian Pop
5026b2cc8b split delinearization pass in 3 steps
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:

- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension

The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.

This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll

; void foo(long n, long m, long o, double A[n][m][o]) {
;
;   for (long i = 0; i < n; i++)
;     for (long j = 0; j < m; j++)
;       for (long k = 0; k < o; k++)
;         A[i][k][j] = 1.0;

Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll

;;  for (long int i = 0; i < 100; i++)
;;    for (long int j = 0; j < 100; j++) {
;;      A[2*i - 4*j] = i;
;;      *B++ = A[6*i + 8*j];

these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208232 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-07 18:01:20 +00:00
Chandler Carruth
4da253756d [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all the header #include lines, lib/Analysis/...
edition.

This one has a bit extra as there were *other* #define's before #include
lines in addition to DEBUG_TYPE. I've sunk all of them as a block.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206843 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-22 02:48:03 +00:00
Craig Topper
570e52c6f1 [C++11] More 'nullptr' conversion. In some cases just using a boolean check instead of comparing to nullptr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206243 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-15 04:59:12 +00:00
Chandler Carruth
876ac60880 [Modules] Move InstIterator out of the Support library, where it had no
business.

This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.

This is one step toward making LLVM's Support library survive a C++
modules bootstrap.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202814 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 10:30:26 +00:00
Sebastian Pop
f9cb030376 normalize the last delinearized dimension
in the dependence test, we used to discard some information that the
delinearization provides: the size of the innermost dimension of an array,
i.e., the size of scalars stored in the array, and the remainder of the
delinearization that provides the offset from which the array reads start,
i.e., the base address of the array.

To avoid losing this data in the rest of the data dependence analysis, the fix
is to multiply the access function in the last delinearized dimension by its
size, effectively making the size of the last dimension to always be in bytes,
and then add the remainder of delinearization to the last subscript,
effectively making the last subscript start at the base address of the array.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201867 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-21 18:15:11 +00:00
Sebastian Pop
fc605ac12c fail delinearization when the size of subscripts differs
Because the delinearization is not a global analysis pass, it will compute the
delinearization independently of knowledge about the way the delinearization
happened for other data accesses to the same array: the dependence analysis will
only trigger the delinearization on a tuple of access functions, and thus
delinearization may compute different subscripts sizes for a same array.  When
that happens the safest is to discard the delinearized information.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201866 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-21 18:15:07 +00:00
Alp Toker
ae43cab6ba Fix known typos
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200018 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-24 17:20:08 +00:00