Take two disjoint Loops L1 and L2.
LoopSimplify fails to simplify some loops (e.g. when indirect branches
are involved). In such situations, it can happen that an exit for L1 is
the header of L2. Thus, when we create PHIs in one of such exits we are
also inserting PHIs in L2 header.
This could break LCSSA form for L2 because these inserted PHIs can also
have uses in L2 exits, which are never handled in the current
implementation. Provide a fix for this corner case and test that we
don't assert/crash on that.
Differential Revision: http://reviews.llvm.org/D6624
rdar://problem/19166231
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224740 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to generate debug info for extremely advanced code such as
typedef struct { long int a; int b;} S;
int foo(S s) {
return s.b;
}
which at -O1 on x86_64 is codegen'd into
define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
ret i32 %s.coerce1, !dbg !24
}
with this patch we emit the following debug info for this
TAG_formal_parameter [3]
AT_location( 0x00000000
0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 )
AT_name( "s" )
AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" )
Thanks to chandlerc, dblaikie, and echristo for their feedback on all
previous iterations of this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224739 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we assumed the section name had the form .text$foo, which is
what we used to do for inline functions. If the dollar wasn't present,
we'd put unwind data in the .pdata and .xdata sections for the main
.text section, which is incorrect.
Fixes PR22001.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224738 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, when ctpop is supported for scalar types, the expansion of
@llvm.ctpop.vXiY uses vector element extractions, insertions and individual
calls to @llvm.ctpop.iY. When not, expansion with bit-math operations is used
for the scalar calls.
Local haswell measurements show that we can improve vector @llvm.ctpop.vXiY
expansion in some cases by using a using a vector parallel bit twiddling
approach, based on:
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = ((v + (v >> 4) & 0xF0F0F0F)
v = v + (v >> 8)
v = v + (v >> 16)
v = v & 0x0000003F
(from http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel)
When scalar ctpop isn't supported, the approach above performs better for
v2i64, v4i32, v4i64 and v8i32 (see numbers below). And even when scalar ctpop
is supported, this approach performs ~2x better for v8i32.
Here, x86_64 implies -march=corei7-avx without ctpop and x86_64h includes ctpop
support with -march=core-avx2.
== [x86_64h - new]
v8i32: 0.661685
v4i32: 0.514678
v4i64: 0.652009
v2i64: 0.324289
== [x86_64h - old]
v8i32: 1.29578
v4i32: 0.528807
v4i64: 0.65981
v2i64: 0.330707
== [x86_64 - new]
v8i32: 1.003
v4i32: 0.656273
v4i64: 1.11711
v2i64: 0.754064
== [x86_64 - old]
v8i32: 2.34886
v4i32: 1.72053
v4i64: 1.41086
v2i64: 1.0244
More work for other vector types will come next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224725 91177308-0d34-0410-b5e6-96231b3b80d8
In resent times asan and valgrind have found way more memory management bugs
in llvm than the special purpose leak detector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224703 91177308-0d34-0410-b5e6-96231b3b80d8
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224691 91177308-0d34-0410-b5e6-96231b3b80d8
The ARM ARM states:
LDM/LDMIA/LDMFD:
The SP can be in the list. However, ARM deprecates using these instructions
with SP in the list.
ARM deprecates using these instructions with both the LR and the PC in the
list.
LDMDA/LDMFA/LDMDB/LDMEA/LDMIB/LDMED:
The SP can be in the list. However, instructions that include the SP in the
list are deprecated.
Instructions that include both the LR and the PC in the list are deprecated.
POP:
The SP can only be in the list before ARMv7. ARM deprecates any use of ARM
instructions that include the SP, and the value of the SP after such an
instruction is UNKNOWN.
ARM deprecates the use of this instruction with both the LR and the PC in
the list.
Attempt to diagnose use of deprecated forms of these instructions. This mirrors
the previous changes to diagnose use of the deprecated forms of STM in ARM mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224682 91177308-0d34-0410-b5e6-96231b3b80d8
(X & INT_MIN) == 0 ? X ^ INT_MIN : X into X | INT_MIN
(X & INT_MIN) != 0 ? X ^ INT_MIN : X into X & INT_MAX
This fixes PR21993.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224676 91177308-0d34-0410-b5e6-96231b3b80d8
getScalarSizeInBits returns zero when the comparison operands are not
integral. No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224675 91177308-0d34-0410-b5e6-96231b3b80d8
(X & INT_MIN) ? X & INT_MAX : X into X & INT_MAX
(X & INT_MIN) ? X : X & INT_MAX into X
(X & INT_MIN) ? X | INT_MIN : X into X
(X & INT_MIN) ? X : X | INT_MIN into X | INT_MIN
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224669 91177308-0d34-0410-b5e6-96231b3b80d8
much of the glory of clang-format, and now any time I touch it I risk
introducing formatting changes as part of a functional commit.
Also, clang-format is *way* better at formatting my code than I am.
Most of this is a huge improvement although I reverted a couple of
places where I hit a clang-format bug with lambdas that has been filed
but not (fully) fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224666 91177308-0d34-0410-b5e6-96231b3b80d8
We must not add kill flags when reading a vreg with some undefined
subregisters, if subreg liveness tracking is enabled. This is because
the register allocator may reuse these undefined subregisters for other
values which are not killed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224664 91177308-0d34-0410-b5e6-96231b3b80d8
- Use more const modifiers
- Use references for things that can't be nullptr
- Improve some variable names
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224663 91177308-0d34-0410-b5e6-96231b3b80d8
It is intended to be used for a family of personality functions that
have similar IR preparation requirements. Typically when interoperating
with MSVC personality functions, bits of functionality need to be
outlined from the main function into helper functions. There is also
usually more than one landing pad per invoke, which does not match the
LLVM IR landingpad representation.
None of this is implemented yet. This change just adds a new enum that
is active for *-windows-msvc and delegates to the EH removal preparation
pass. No functionality change for other targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224625 91177308-0d34-0410-b5e6-96231b3b80d8
The constant bus restrictions only apply to VALU instructions. This
enables SIFoldOperands to fold immediates into SALU instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224623 91177308-0d34-0410-b5e6-96231b3b80d8
mubuf instructions now define the soffset field using the SCSrc_32
register class which indicates that only SGPRs and inline constants
are allowed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224622 91177308-0d34-0410-b5e6-96231b3b80d8