Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@359072 91177308-0d34-0410-b5e6-96231b3b80d8
Arguments already have a flag to inform backends when they have been split up.
The AArch64 arm64_32 ABI makes use of these on return types too, so that code
emitted for armv7k can be ABI-compliant.
There should be no CodeGen changes yet, just making more information available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358399 91177308-0d34-0410-b5e6-96231b3b80d8
The arm64_32 ABI specifies that pointers (despite being 32-bits) should be
zero-extended to 64-bits when passed in registers for efficiency reasons. This
means that the SelectionDAG needs to be able to tell the backend that an
argument was originally a pointer, which is implmented here.
Additionally, some memory intrinsics need to be declared as taking an i8*
instead of an iPTR.
There should be no CodeGen change yet, but it will be triggered when AArch64
backend support for ILP32 is added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358398 91177308-0d34-0410-b5e6-96231b3b80d8
In the example below, we would previously emit two range checks, one for cases
1--3 and one for 4--6. This patch makes us exploit the fact that the
fall-through is unreachable and only one range check is necessary.
switch i32 %i, label %default [
i32 1, label %bb1
i32 2, label %bb1
i32 3, label %bb1
i32 4, label %bb2
i32 5, label %bb2
i32 6, label %bb2
]
default: unreachable
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357252 91177308-0d34-0410-b5e6-96231b3b80d8
Split out from D59749. The current implementation of isWrappedSet()
doesn't do what it says on the tin, and treats ranges like
[X, Max] as wrapping, because they are represented as [X, 0) when
using half-inclusive ranges. This also makes it inconsistent with
the semantics of isSignWrappedSet().
This patch renames isWrappedSet() to isUpperWrapped(), in preparation
for the introduction of a new isWrappedSet() method with corrected
behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357107 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit by Ayonam Ray.
This commit adds a regression test for the issue discovered in the
previous commit: that the range check for the jump table can only be
omitted if the fall-through destination of the jump table is
unreachable, which isn't necessarily true just because the default of
the switch is unreachable.
This addresses the missing optimization in PR41242.
> During the lowering of a switch that would result in the generation of a
> jump table, a range check is performed before indexing into the jump
> table, for the switch value being outside the jump table range and a
> conditional branch is inserted to jump to the default block. In case the
> default block is unreachable, this conditional jump can be omitted. This
> patch implements omitting this conditional branch for unreachable
> defaults.
>
> Differential Revision: https://reviews.llvm.org/D52002
> Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357067 91177308-0d34-0410-b5e6-96231b3b80d8
The actual code change is fairly straight forward, but exercising it isn't. First, it turned out we weren't adding the appropriate flags in SelectionDAG. Second, it turned out that we've got some optimization gaps, so obvious test cases don't work.
My first attempt (in atomic-unordered.ll) points out a deficiency in our peephole-opt folding logic which I plan to fix separately. Instead, I'm exercising this through MachineLICM.
Differential Revision: https://reviews.llvm.org/D59375
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356494 91177308-0d34-0410-b5e6-96231b3b80d8
These changes are related to PR37743 and include:
SelectionDAGBuilder::visitSelect handles the unary SelectPatternFlavor::SPF_ABS case to build ABS node.
Delete the redundant recognizer of the integer ABS pattern from the DAGCombiner.
Add promoting the integer ABS node in the LegalizeIntegerType.
Expand-based legalization of integer result for the ABS nodes.
Expand-based legalization of ABS vector operations.
Add some integer abs testcases for different typesizes for Thumb arch
Add the custom ABS expanding and change the SAD pattern recognizer for X86 arch: The i64 result of the ABS is expanded to:
tmp = (SRA, Hi, 31)
Lo = (UADDO tmp, Lo)
Hi = (XOR tmp, (ADDCARRY tmp, hi, Lo:1))
Lo = (XOR tmp, Lo)
The "detectZextAbsDiff" function is changed for the recognition of pattern with the ABS node. Given a ABS node, detect the following pattern:
(ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
Change integer abs testcases for codegen with the ABS node support for AArch64.
Indicate that the ABS is legal for the i64 type when the NEON is supported.
Change the integer abs testcases to show changing of codegen.
Add combine and legalization of ABS nodes for Thumb arch.
Extend 'matchSelectPattern' to recognize the ABS patterns with ICMP_SGE condition.
For discussion, see https://bugs.llvm.org/show_bug.cgi?id=37743
Patch by: @ikulagin (Ivan Kulagin)
Differential Revision: https://reviews.llvm.org/D49837
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356468 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Look past bitcasts when looking for parameter debug values that are
described by frame-index loads in `EmitFuncArgumentDbgValue()`.
In the attached test case we would be left with an undef `DBG_VALUE`
for the parameter without this patch.
A similar fix was done for parameters passed in registers in D13005.
This fixes PR40777.
Reviewers: aprantl, vsk, jmorse
Reviewed By: aprantl
Subscribers: bjope, javed.absar, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D58831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356363 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In the new wasm EH proposal, `rethrow` takes an `except_ref` argument.
This change was missing in r352598.
This patch adds `llvm.wasm.rethrow.in.catch` intrinsic. This is an
intrinsic that's gonna eventually be lowered to wasm `rethrow`
instruction, but this intrinsic can appear only within a catchpad or a
cleanuppad scope. Also this intrinsic needs to be invokable - otherwise
EH pad successor for it will not be correctly generated in clang.
This also adds lowering logic for this intrinsic in
`SelectionDAGBuilder::visitInvoke`. This routine is basically a
specialized and simplified version of
`SelectionDAGBuilder::visitTargetIntrinsic`, but we can't use it
because if is only for `CallInst`s.
This deletes the previous `llvm.wasm.rethrow` intrinsic and related
tests, which was meant to be used within a `__cxa_rethrow` library
function. Turned out this needs some more logic, so the intrinsic for
this purpose will be added later.
LateEHPrepare takes a result value of `catch` and inserts it into
matching `rethrow` as an argument.
`RETHROW_IN_CATCH` is a pseudo instruction that serves as a link between
`llvm.wasm.rethrow.in.catch` and the real wasm `rethrow` instruction. To
generate a `rethrow` instruction, we need an `except_ref` argument,
which is generated from `catch` instruction. But `catch` instrutions are
added in LateEHPrepare pass, so we use `RETHROW_IN_CATCH`, which takes
no argument, until we are able to correctly lower it to `rethrow` in
LateEHPrepare.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59352
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356316 91177308-0d34-0410-b5e6-96231b3b80d8
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Differential Revision: https://reviews.llvm.org/D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355490 91177308-0d34-0410-b5e6-96231b3b80d8
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Differential Revision: https://reviews.llvm.org/D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355483 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before when we implemented the first EH proposal, 'catch <tag>'
instruction may not catch an exception so there were multiple EH pads an
exception can unwind to. That means a BB could have multiple EH pad
successors.
Now after we switched to the new proposal, every 'catch' instruction
catches an exception, and there is only one catchpad per catchswitch, so
we at most have one EH pad successor, making `ThrowUnwindDest` map in
`WasmEHInfo` unnecessary.
Keeping `ThrowUnwindDest` map in `WasmEHInfo` has its own problems,
because other optimization passes can split a BB that contains possibly
throwing calls (previously invokes), and we have to update the map every
time that happens, which is not easy for common CodeGen passes.
This also correctly updates successor info in LateEHPrepare when we add
a rethrow instruction.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58486
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355296 91177308-0d34-0410-b5e6-96231b3b80d8
At the moment, we mark every atomic memory access as being also volatile. This is unnecessarily conservative and prohibits many legal transforms (DCE, folding, etc..).
This patch removes MOVolatile from the MachineMemOperands of atomic, but not volatile, instructions. This should be strictly NFC after a series of previous patches which have gone in to ensure backend code is conservative about handling of isAtomic MMOs. Once it's in and baked for a bit, we'll start working through removing unnecessary bailouts one by one. We applied this same strategy to the middle end a few years ago, with good success.
To make sure this patch itself is NFC, it is build on top of a series of other patches which adjust code to (for the moment) be as conservative for an atomic access as for a volatile access and build up a test corpus (mostly in test/CodeGen/X86/atomics-unordered.ll)..
Previously landed
D57593 Fix a bug in the definition of isUnordered on MachineMemOperand
D57596 [CodeGen] Be conservative about atomic accesses as for volatile
D57802 Be conservative about unordered accesses for the moment
rL353959: [Tests] First batch of cornercase tests for unordered atomics.
rL353966: [Tests] RMW folding tests w/unordered atomic operations.
rL353972: [Tests] More unordered atomic lowering tests.
rL353989: [SelectionDAG] Inline a single use helper function, and remove last non-MMO interface
rL354740: [Hexagon, SystemZ] Be super conservative about atomics
rL354800: [Lanai] Be super conservative about atomics
rL354845: [ARM] Be super conservative about atomics
Attention Out of Tree Backend Owners: This patch may break you. If it does, you can use the TLI getMMOFlags hook to restore the MOVolatile to any instruction you need to. (See llvm-dev thread titled "PSA: Changes to how atomics are handled in backends" started Feb 27, 2019.)
Differential Revision: https://reviews.llvm.org/D57601
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@355025 91177308-0d34-0410-b5e6-96231b3b80d8
While rebasing a refactor in r353950 I accidentally swapped two function
arguments; one is SelectionDAGBuilders "current" DebugLoc, the other is the one
from the "current" debug intrinsic. They're probably always identical, but I
haven't proved that yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@354019 91177308-0d34-0410-b5e6-96231b3b80d8
For D57601, we need to know whether the instruction is volatile. We'd either have to pass yet another parameter, or just standardize on the MMO interface. I chose the second.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353989 91177308-0d34-0410-b5e6-96231b3b80d8
The helper function was used by only two callers, and largely ended up providing distinct functionality based on optional arguments and opcode. Inline and simply to make the functionality much more clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353977 91177308-0d34-0410-b5e6-96231b3b80d8
In this patch SelectionDAG tries to salvage any dbg.values that are going to be
dropped, in case they can be recovered from Values in the current BB. It also
strengthens SelectionDAGs handling of dangling debug data, so that dbg.values
are *always* emitted (as Undef or otherwise) instead of dangling forever.
The motivation behind this patch exists in the new test case: a memory address
(here a bitcast and GEP) exist in one basic block, and a dbg.value referring to
the address is left in the 'next' block. The base pointer is live across all
basic blocks. In current llvm trunk the dbg.value cannot be encoded, and it
isn't even emitted as an Undef DBG_VALUE.
The change is simply: if we're definitely going to drop a dbg.value, repeatedly
apply salvageDebugInfo to its operand until either we find something that can
be encoded, or we can't salvage any further in which case we produce an Undef
DBG_VALUE. To know when we're "definitely going to drop a dbg.value",
SelectionDAG signals SelectionDAGBuilder when all IR instructions have been
encoded to force salvaging. This ensures that any dbg.value that's dangling
after DAG creation will have a corresponding DBG_VALUE encoded.
Differential Revision: https://reviews.llvm.org/D57694
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353954 91177308-0d34-0410-b5e6-96231b3b80d8
This is a pure copy-and-paste job, moving the logic for lowering dbg.value
intrinsics to SDDbgValues into its own function. This is ahead of adding some
more users of this logic.
Differential Revision: https://reviews.llvm.org/D57697
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353950 91177308-0d34-0410-b5e6-96231b3b80d8
SelectionDAGBuilder has special handling for dbg.value intrinsics that are
understood to define the location of function parameters on entry to the
function. To enable this, we avoid recording a dbg.value as a virtual register
reference if it might be such a parameter, so that it later hits
EmitFuncArgumentDbgValue.
This patch reduces the set of circumstances where we avoid recording a
dbg.value as a virtual register reference, to allow more "normal" variables
to be recorded that way. We now only bypass for potential parameters if:
* The dbg.value operand is an Argument,
* The Variable is a parameter, and
* The Variable is not inlined.
meaning it's very likely that the dbg.value is a function-entry parameter
location.
Differential Revision: https://reviews.llvm.org/D57584
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353948 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch fixes PR40587.
When a dbg.value instrinsic is emitted to the DAG
by using EmitFuncArgumentDbgValue the resulting
DBG_VALUE is hoisted to the beginning of the entry
block. I think the idea is to be able to locate
a formal argument already from the start of the
function.
However, EmitFuncArgumentDbgValue only checked that
the value that was used to describe a variable was
originating from a function parameter, not that the
variable itself actually was an argument to the
function. So when for example assigning a local
variable "local" the value from an argument "a",
the assocated DBG_VALUE instruction would be hoisted
to the beginning of the function, even if the scope
for "local" started somewhere else (or if "local"
was mapped to other values earlier in the function).
This patch adds some logic to EmitFuncArgumentDbgValue
to check that the variable being described actually
is an argument to the function. And that the dbg.value
being lowered already is in the entry block. Otherwise
we bail out, and the dbg.value will be handled as an
ordinary dbg.value (not as a "FuncArgumentDbgValue").
A tricky situation is when both the variable and
the value is related to function arguments, but not
neccessarily the same argument. We make sure that we
do not describe the same argument more than once as
a "FuncArgumentDbgValue". This solution works as long
as opt has injected a "first" dbg.value that corresponds
to the formal argument at the function entry.
Reviewers: jmorse, aprantl
Subscribers: jyknight, hiraditya, fedor.sergeev, dstenb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57702
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353735 91177308-0d34-0410-b5e6-96231b3b80d8
`CallBase` class rather than `CallSite` wrappers.
I pushed this change down through most of the statepoint infrastructure,
completely removing the use of CallSite where I could reasonably do so.
I ended up making a couple of cut-points: generic call handling
(instcombine, TLI, SDAG). As soon as it hit truly generic handling with
users outside the immediate code, I simply transitioned into or out of
a `CallSite` to make this a reasonable sized chunk.
Differential Revision: https://reviews.llvm.org/D56122
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353660 91177308-0d34-0410-b5e6-96231b3b80d8
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353563 91177308-0d34-0410-b5e6-96231b3b80d8
This is part of https://bugs.llvm.org/show_bug.cgi?id=40442.
Vector legalization is implemented for the add/sub overflow opcodes.
UMULO/SMULO are also handled as far as legalization is concerned, but
they don't support vector expansion yet (so no tests for them).
The vector result widening implementation is suboptimal, because it
could result in a legalization loop.
Differential Revision: https://reviews.llvm.org/D57639
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353464 91177308-0d34-0410-b5e6-96231b3b80d8
Add an intrinsic that takes 2 unsigned integers with the scale of them
provided as the third argument and performs fixed point multiplication on
them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55625
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@353059 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This fixes using the correct stack registers for SEH when stack realignment is needed or when variable size objects are present.
Reviewers: rnk, efriedma, ssijaric, TomTan
Reviewed By: rnk, efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D57183
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@352923 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This switches the EH implementation to the new proposal:
https://github.com/WebAssembly/exception-handling/blob/master/proposals/Exceptions.md
(The previous proposal was
https://github.com/WebAssembly/exception-handling/blob/master/proposals/old/Exceptions.md)
- Instruction changes
- Now we have one single `catch` instruction that returns a except_ref
value
- `throw` now can take variable number of operations
- `rethrow` does not have 'depth' argument anymore
- `br_on_exn` queries an except_ref to see if it matches the tag and
branches to the given label if true.
- `extract_exception` is a pseudo instruction that simulates popping
values from wasm stack. This is to make `br_on_exn`, a very special
instruction, work: `br_on_exn` puts values onto the stack only if it
is taken, and the # of values can vay depending on the tag.
- Now there's only one `catch` per `try`, this patch removes all special
handling for terminate pad with a call to `__clang_call_terminate`.
Before it was the only case there are two catch clauses (a normal
`catch` and `catch_all` per `try`).
- Make `rethrow` act as a terminator like `throw`. This splits BB after
`rethrow` in WasmEHPrepare, and deletes an unnecessary `unreachable`
after `rethrow` in LateEHPrepare.
- Now we stop at all catchpads (because we add wasm `catch` instruction
that catches all exceptions), this creates new
`findWasmUnwindDestinations` function in SelectionDAGBuilder.
- Now we use `br_on_exn` instrution to figure out if an except_ref
matches the current tag or not, LateEHPrepare generates this sequence
for catch pads:
```
catch
block i32
br_on_exn $__cpp_exception
end_block
extract_exception
```
- Branch analysis for `br_on_exn` in WebAssemblyInstrInfo
- Other various misc. changes to switch to the new proposal.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D57134
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@352598 91177308-0d34-0410-b5e6-96231b3b80d8
During the lowering of a switch that would result in the generation of a
jump table, a range check is performed before indexing into the jump
table, for the switch value being outside the jump table range and a
conditional branch is inserted to jump to the default block. In case the
default block is unreachable, this conditional jump can be omitted. This
patch implements omitting this conditional branch for unreachable
defaults.
Review ID: D52002
Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@352484 91177308-0d34-0410-b5e6-96231b3b80d8
A FrameIndex should be valid throughout a block regardless of what instructions
get selected in that block -- therefore we shouldn't harness dbg.values that
refer to FrameIndexes to an SDNode. There are numerous codegen reasons why
an SDNode never appears or doesn't become a location that a DBG_VALUE can
refer to. None of them actually affect the variable location.
Therefore, before any other tests to encode dbg_values in a SelectionDAG,
identify FrameIndex operands and encode them unattached to any SDNode.
Differential Revision: https://reviews.llvm.org/D57328
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@352467 91177308-0d34-0410-b5e6-96231b3b80d8
It should be emitted when any floating-point operations (including
calls) are present in the object, not just when calls to printf/scanf
with floating point args are made.
The difference caused by this is very subtle: in static (/MT) builds,
on x86-32, in a program that uses floating point but doesn't print it,
the default x87 rounding mode may not be set properly upon
initialization.
This commit also removes the walk of the types pointed to by pointer
arguments in calls. (To assist in opaque pointer types migration --
eventually the pointee type won't be available.)
That latter implies that it will no longer consider a call like
`scanf("%f", &floatvar)` as sufficient to emit _fltused on its
own. And without _fltused, `scanf("%f")` will abort with error R6002. This
new behavior is unlikely to bite anyone in practice (you'd have to
read a float, and do nothing with it!), and also, is consistent with
MSVC.
Differential Revision: https://reviews.llvm.org/D56548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@352076 91177308-0d34-0410-b5e6-96231b3b80d8