In order to efficiently write PDBs, we need to be able to make a
StreamWriter class similar to a StreamReader, which can transparently deal
with writing to discontiguous streams, and we need to use this for all
writing, similar to how we use StreamReader for all reading.
Most discontiguous streams are the typical numbered streams that appear in
a PDB file and are described by the directory, but the exception to this,
that until now has been parsed by hand, is the directory itself.
MappedBlockStream works by querying the directory to find out which blocks
a stream occupies and various other things, so naturally the same logic
could not possibly work to describe the blocks that the directory itself
resided on.
To solve this, I've introduced an abstraction IPDBStreamData, which allows
the client to query for the list of blocks occupied by the stream, as well
as the stream length. I provide two implementations of this: one which
queries the directory (for indexed streams), and one which queries the
super block (for the directory stream).
This has the side benefit of vastly simplifying the code to parse the
directory. Whereas before a mini state machine was rolled by hand, now we
simply use FixedStreamArray to read out the stream sizes, then build a
vector of FixedStreamArrays for the stream map, all in just a few lines of
code.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271982 91177308-0d34-0410-b5e6-96231b3b80d8
PDBs can be extremely large. We're already mapping the entire
PDB into the process's address space, but to make matters worse
the blocks of the PDB are not arranged contiguously. So, when
we have something like an array or a string embedded into the
stream, we have to make a copy. Since it's convenient to use
traditional data structures to iterate and manipulate these
records, we need the memory to be contiguous.
As a result of this, we were using roughly twice as much memory
as the file size of the PDB, because every stream was copied
out and re-stitched together contiguously.
This patch addresses this by improving the MappedBlockStream
to allocate from a BumpPtrAllocator only when a read requires
a discontiguous read. Furthermore, it introduces some data
structures backed by a stream which can iterate over both
fixed and variable length records of a PDB. Since everything
is backed by a stream and not a buffer, we can read almost
everything from the PDB with zero copies.
Differential Revision: http://reviews.llvm.org/D20654
Reviewed By: ruiu
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270951 91177308-0d34-0410-b5e6-96231b3b80d8
We have need to reuse this functionality, including making
additional generic stream types that are smarter about how and
when they copy memory versus referencing the original memory.
So all of these structures belong in the common library
rather than being pdb specific.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270751 91177308-0d34-0410-b5e6-96231b3b80d8
Try to figure out what each stream is, and dump its name.
This gives us a better picture of what streams we still don't
understand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@270653 91177308-0d34-0410-b5e6-96231b3b80d8