Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286291 91177308-0d34-0410-b5e6-96231b3b80d8
This helps canonicalization in some cases.
Thanks to Pankaj Chawla for the investigation and the test case!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284501 91177308-0d34-0410-b5e6-96231b3b80d8
The basic inlining operation makes the following changes to the call graph:
1) Add edges that were previously transitive edges. This is always trivial and
this patch gives the LCG helper methods to make this more convenient.
2) Remove the inlined edge. We had existing support for this, but it contained
bugs that needed to be fixed. Testing in the same pattern as the inliner
exposes these bugs very nicely.
3) Delete a function when it becomes dead because it is internal and all calls
have been inlined. The LCG had no support at all for this operation, so this
adds that support.
Two unittests have been added that exercise this specific mutation pattern to
the call graph. They were extremely effective in uncovering bugs. Sadly,
a large fraction of the code here is just to implement those unit tests, but
I think they're paying for themselves. =]
This was split out of a patch that actually uses the routines to
implement inlining in the new pass manager in order to isolate (with
unit tests) the logic that was entirely within the LCG.
Many thanks for the careful review from folks! There will be a few minor
follow-up patches based on the comments in the review as well.
Differential Revision: https://reviews.llvm.org/D24225
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283982 91177308-0d34-0410-b5e6-96231b3b80d8
a function pass nested inside of a CGSCC pass manager.
This is very similar to the previous unittest but makes sure the
invalidation logic works across all the layers here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282378 91177308-0d34-0410-b5e6-96231b3b80d8
This reinstates r280447. Original commit log:
This wasn't really well explicitly tested with a nice unittest before.
It seems good to have reasonably broken out unittests for this kind of
functionality as I'm workin go other invalidation features to make sure
none of the existing ones regress.
This still has too much duplicated code, I plan to factor that out in
a subsequent commit to use common helpers for repeated parts of this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@282377 91177308-0d34-0410-b5e6-96231b3b80d8
LazyCallGraph to support repeated, stable iterations, even in the face
of graph updates.
This is particularly important to allow the CGSCC pass manager to walk
the RefSCCs (and thus everything else) in a module more than once. Lots
of unittests and other tests were hard or impossible to write because
repeated CGSCC pass managers which didn't invalidate the LazyCallGraph
would conclude the module was empty after the first one. =[ Really,
really bad.
The interesting thing is that in many ways this simplifies the code. We
can now re-use the same code for handling reference edge insertion
updates of the RefSCC graph as we use for handling call edge insertion
updates of the SCC graph. Outside of adapting to the shared logic for
this (which isn't trivial, but is *much* simpler than the DFS it
replaces!), the new code involves putting newly created RefSCCs when
deleting a reference edge into the cached list in the correct way, and
to re-formulate the iterator to be stable and effective even in the face
of these kinds of updates.
I've updated the unittests for the LazyCallGraph to re-iterate the
postorder sequence and verify that this all works. We even check for
using alternating iterators to trigger the lazy formation of RefSCCs
after mutation has occured.
It's worth noting that there are a reasonable number of likely
simplifications we can make past this. It isn't clear that we need to
keep the "LeafRefSCCs" around any more. But I've not removed that mostly
because I want this to be a more isolated change.
Differential Revision: https://reviews.llvm.org/D24219
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281716 91177308-0d34-0410-b5e6-96231b3b80d8
This was mistakenly committed. The world isn't ready for this test, the
test code has horrible debugging code in it that should never have
landed in tree, it currently passes because of bugs elsewhere, and it
needs to be rewritten to not be susceptible to passing for the wrong
reasons.
I'll re-land this in a better form when the prerequisite patches land.
So sorry that I got this mixed into a series of commits that *were*
ready to land. I shouldn't have. =[ What's worse is that it stuck around
for so long and I discovered it while fixing the underlying bug that
caused it to pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280620 91177308-0d34-0410-b5e6-96231b3b80d8
constructor when trying to do copy construction by adding an explicit
move constructor.
Will watch the bots to discover if this is sufficient.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280479 91177308-0d34-0410-b5e6-96231b3b80d8
This wasn't really well explicitly tested with a nice unittest before.
It seems good to have reasonably broken out unittests for this kind of
functionality as I'm workin go other invalidation features to make sure
none of the existing ones regress.
This still has too much duplicated code, I plan to factor that out in
a subsequent commit to use common helpers for repeated parts of this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280447 91177308-0d34-0410-b5e6-96231b3b80d8
passes.
This simplifies the test some and makes it more focused and clear what
is being tested. It will also make it much easier to extend with further
testing of different pass behaviors.
I've also replaced a pointless module pass with running the requires
pass directly as that is all that it was really doing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280444 91177308-0d34-0410-b5e6-96231b3b80d8
manager, including both plumbing and logic to handle function pass
updates.
There are three fundamentally tied changes here:
1) Plumbing *some* mechanism for updating the CGSCC pass manager as the
CG changes while passes are running.
2) Changing the CGSCC pass manager infrastructure to have support for
the underlying graph to mutate mid-pass run.
3) Actually updating the CG after function passes run.
I can separate them if necessary, but I think its really useful to have
them together as the needs of #3 drove #2, and that in turn drove #1.
The plumbing technique is to extend the "run" method signature with
extra arguments. We provide the call graph that intrinsically is
available as it is the basis of the pass manager's IR units, and an
output parameter that records the results of updating the call graph
during an SCC passes's run. Note that "...UpdateResult" isn't a *great*
name here... suggestions very welcome.
I tried a pretty frustrating number of different data structures and such
for the innards of the update result. Every other one failed for one
reason or another. Sometimes I just couldn't keep the layers of
complexity right in my head. The thing that really worked was to just
directly provide access to the underlying structures used to walk the
call graph so that their updates could be informed by the *particular*
nature of the change to the graph.
The technique for how to make the pass management infrastructure cope
with mutating graphs was also something that took a really, really large
number of iterations to get to a place where I was happy. Here are some
of the considerations that drove the design:
- We operate at three levels within the infrastructure: RefSCC, SCC, and
Node. In each case, we are working bottom up and so we want to
continue to iterate on the "lowest" node as the graph changes. Look at
how we iterate over nodes in an SCC running function passes as those
function passes mutate the CG. We continue to iterate on the "lowest"
SCC, which is the one that continues to contain the function just
processed.
- The call graph structure re-uses SCCs (and RefSCCs) during mutation
events for the *highest* entry in the resulting new subgraph, not the
lowest. This means that it is necessary to continually update the
current SCC or RefSCC as it shifts. This is really surprising and
subtle, and took a long time for me to work out. I actually tried
changing the call graph to provide the opposite behavior, and it
breaks *EVERYTHING*. The graph update algorithms are really deeply
tied to this particualr pattern.
- When SCCs or RefSCCs are split apart and refined and we continually
re-pin our processing to the bottom one in the subgraph, we need to
enqueue the newly formed SCCs and RefSCCs for subsequent processing.
Queuing them presents a few challenges:
1) SCCs and RefSCCs use wildly different iteration strategies at
a high level. We end up needing to converge them on worklist
approaches that can be extended in order to be able to handle the
mutations.
2) The order of the enqueuing need to remain bottom-up post-order so
that we don't get surprising order of visitation for things like
the inliner.
3) We need the worklists to have set semantics so we don't duplicate
things endlessly. We don't need a *persistent* set though because
we always keep processing the bottom node!!!! This is super, super
surprising to me and took a long time to convince myself this is
correct, but I'm pretty sure it is... Once we sink down to the
bottom node, we can't re-split out the same node in any way, and
the postorder of the current queue is fixed and unchanging.
4) We need to make sure that the "current" SCC or RefSCC actually gets
enqueued here such that we re-visit it because we continue
processing a *new*, *bottom* SCC/RefSCC.
- We also need the ability to *skip* SCCs and RefSCCs that get merged
into a larger component. We even need the ability to skip *nodes* from
an SCC that are no longer part of that SCC.
This led to the design you see in the patch which uses SetVector-based
worklists. The RefSCC worklist is always empty until an update occurs
and is just used to handle those RefSCCs created by updates as the
others don't even exist yet and are formed on-demand during the
bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and
we push new SCCs onto it and blacklist existing SCCs on it to get the
desired processing.
We then *directly* update these when updating the call graph as I was
never able to find a satisfactory abstraction around the update
strategy.
Finally, we need to compute the updates for function passes. This is
mostly used as an initial customer of all the update mechanisms to drive
their design to at least cover some real set of use cases. There are
a bunch of interesting things that came out of doing this:
- It is really nice to do this a function at a time because that
function is likely hot in the cache. This means we want even the
function pass adaptor to support online updates to the call graph!
- To update the call graph after arbitrary function pass mutations is
quite hard. We have to build a fairly comprehensive set of
data structures and then process them. Fortunately, some of this code
is related to the code for building the cal graph in the first place.
Unfortunately, very little of it makes any sense to share because the
nature of what we're doing is so very different. I've factored out the
one part that made sense at least.
- We need to transfer these updates into the various structures for the
CGSCC pass manager. Once those were more sanely worked out, this
became relatively easier. But some of those needs necessitated changes
to the LazyCallGraph interface to make it significantly easier to
extract the changed SCCs from an update operation.
- We also need to update the CGSCC analysis manager as the shape of the
graph changes. When an SCC is merged away we need to clear analyses
associated with it from the analysis manager which we didn't have
support for in the analysis manager infrsatructure. New SCCs are easy!
But then we have the case that the original SCC has its shape changed
but remains in the call graph. There we need to *invalidate* the
analyses associated with it.
- We also need to invalidate analyses after we *finish* processing an
SCC. But the analyses we need to invalidate here are *only those for
the newly updated SCC*!!! Because we only continue processing the
bottom SCC, if we split SCCs apart the original one gets invalidated
once when its shape changes and is not processed farther so its
analyses will be correct. It is the bottom SCC which continues being
processed and needs to have the "normal" invalidation done based on
the preserved analyses set.
All of this is mostly background and context for the changes here.
Many thanks to all the reviewers who helped here. Especially Sanjoy who
caught several interesting bugs in the graph algorithms, David, Sean,
and others who all helped with feedback.
Differential Revision: http://reviews.llvm.org/D21464
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279618 91177308-0d34-0410-b5e6-96231b3b80d8
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278079 91177308-0d34-0410-b5e6-96231b3b80d8
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278077 91177308-0d34-0410-b5e6-96231b3b80d8
tests will want different IR.
Wanted this when writing tests for the proposed CG update stuff, and
this is an easily separable piece.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273973 91177308-0d34-0410-b5e6-96231b3b80d8
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272978 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r269388.
It caused some bots to fail, I'm reverting it until I investigate the
issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269395 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
...loop after the last iteration.
This is really hard to do correctly. The core problem is that we need to
model liveness through the induction PHIs from iteration to iteration in
order to get the correct results, and we need to correctly de-duplicate
the common subgraphs of instructions feeding some subset of the
induction PHIs. All of this can be driven either from a side effect at
some iteration or from the loop values used after the loop finishes.
This patch implements this by storing the forward-propagating analysis
of each instruction in a cache to recall whether it was free and whether
it has become live and thus counted toward the total unroll cost. Then,
at each sink for a value in the loop, we recursively walk back through
every value that feeds the sink, including looping back through the
iterations as needed, until we have marked the entire input graph as
live. Because we cache this, we never visit instructions more than twice
-- once when we analyze them and put them into the cache, and once when
we count their cost towards the unrolled loop. Also, because the cache
is only two bits and because we are dealing with relatively small
iteration counts, we can store all of this very densely in memory to
avoid this from becoming an excessively slow analysis.
The code here is still pretty gross. I would appreciate suggestions
about better ways to factor or split this up, I've stared too long at
the algorithmic side to really have a good sense of what the design
should probably look at.
Also, it might seem like we should do all of this bottom-up, but I think
that is a red herring. Specifically, the simplification power is *much*
greater working top-down. We can forward propagate very effectively,
even across strange and interesting recurrances around the backedge.
Because we use data to propagate, this doesn't cause a state space
explosion. Doing this level of constant folding, etc, would be very
expensive to do bottom-up because it wouldn't be until the last moment
that you could collapse everything. The current solution is essentially
a top-down simplification with a bottom-up cost accounting which seems
to get the best of both worlds. It makes the simplification incremental
and powerful while leaving everything dead until we *know* it is needed.
Finally, a core property of this approach is its *monotonicity*. At all
times, the current UnrolledCost is a conservatively low estimate. This
ensures that we will never early-exit from the analysis due to exceeding
a threshold when if we had continued, the cost would have gone back
below the threshold. These kinds of bugs can cause incredibly hard to
track down random changes to behavior.
We could use a techinque similar (but much simpler) within the inliner
as well to avoid considering speculated code in the inline cost.
Reviewers: chandlerc
Subscribers: sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D11758
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@269388 91177308-0d34-0410-b5e6-96231b3b80d8
A loop pass that didn't preserve this entire set of passes wouldn't
play well with other loop passes, since these are generally a basic
requirement to do any interesting transformations to a loop.
Adds a helper to get the set of analyses a loop pass should preserve,
and checks that any loop pass we run satisfies the requirement.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@268444 91177308-0d34-0410-b5e6-96231b3b80d8
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@266379 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@265602 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: As we now have unit-tests for UnrollAnalyzer, we can convert some existing tests to this format. It should make the tests more robust.
Reviewers: chandlerc, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17904
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263318 91177308-0d34-0410-b5e6-96231b3b80d8
This was originally a pointer to support pass managers which didn't use
AnalysisManagers. However, that doesn't realistically come up much and
the complexity of supporting it doesn't really make sense.
In fact, *many* parts of the pass manager were just assuming the pointer
was never null already. This at least makes it much more explicit and
clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@263219 91177308-0d34-0410-b5e6-96231b3b80d8
parts of the AA interface out of the base class of every single AA
result object.
Because this logic reformulates the query in terms of some other aspect
of the API, it would easily cause O(n^2) query patterns in alias
analysis. These could in turn be magnified further based on the number
of call arguments, and then further based on the number of AA queries
made for a particular call. This ended up causing problems for Rust that
were actually noticable enough to get a bug (PR26564) and probably other
places as well.
When originally re-working the AA infrastructure, the desire was to
regularize the pattern of refinement without losing any generality.
While I think it was successful, that is clearly proving to be too
costly. And the cost is needless: we gain no actual improvement for this
generality of making a direct query to tbaa actually be able to
re-use some other alias analysis's refinement logic for one of the other
APIs, or some such. In short, this is entirely wasted work.
To the extent possible, delegation to other API surfaces should be done
at the aggregation layer so that we can avoid re-walking the
aggregation. In fact, this significantly simplifies the logic as we no
longer need to smuggle the aggregation layer into each alias analysis
(or the TargetLibraryInfo into each alias analysis just so we can form
argument memory locations!).
However, we also have some delegation logic inside of BasicAA and some
of it even makes sense. When the delegation logic is baking in specific
knowledge of aliasing properties of the LLVM IR, as opposed to simply
reformulating the query to utilize a different alias analysis interface
entry point, it makes a lot of sense to restrict that logic to
a different layer such as BasicAA. So one aspect of the delegation that
was in every AA base class is that when we don't have operand bundles,
we re-use function AA results as a fallback for callsite alias results.
This relies on the IR properties of calls and functions w.r.t. aliasing,
and so seems a better fit to BasicAA. I've lifted the logic up to that
point where it seems to be a natural fit. This still does a bit of
redundant work (we query function attributes twice, once via the
callsite and once via the function AA query) but it is *exactly* twice
here, no more.
The end result is that all of the delegation logic is hoisted out of the
base class and into either the aggregation layer when it is a pure
retargeting to a different API surface, or into BasicAA when it relies
on the IR's aliasing properties. This should fix the quadratic query
pattern reported in PR26564, although I don't have a stand-alone test
case to reproduce it.
It also seems general goodness. Now the numerous AAs that don't need
target library info don't carry it around and depend on it. I think
I can even rip out the general access to the aggregation layer and only
expose that in BasicAA as it is the only place where we re-query in that
manner.
However, this is a non-trivial change to the AA infrastructure so I want
to get some additional eyes on this before it lands. Sadly, it can't
wait long because we should really cherry pick this into 3.8 if we're
going to go this route.
Differential Revision: http://reviews.llvm.org/D17329
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262490 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect.
Reviewers: chandlerc, hfinkel
Subscribers: sanjoy, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17632
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261958 91177308-0d34-0410-b5e6-96231b3b80d8
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.
This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261831 91177308-0d34-0410-b5e6-96231b3b80d8
pattern that triggers it. This essentially requires an immutable
function analysis, as that will survive anything we do to invalidate it.
When we have such patterns, the function analysis manager will not get
cleared between runs of the proxy.
If we actually need an assert about how things are queried, we can add
more elaborate machinery for computing it, but so far I'm not aware of
significant value provided.
Thanks to Justin Lebar for noticing this when he made a (seemingly
innocuous) change to FunctionAttrs that is enough to trigger it in one
test there. Now it is covered by a direct test of the pass manager code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261627 91177308-0d34-0410-b5e6-96231b3b80d8
system.
Previously, this was only being tested with larger integration tests.
That makes it hard to isolated specific issues with it, and makes the
APIs themselves less well tested. Add a unittest based around the same
patterns used for testing the general pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261624 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch simplified SCEV expressions for PHI nodes were only returned
the very first time getSCEV() was called, but later calls to getSCEV always
returned the non-simplified value, which had "temporarily" been stored in the
ValueExprMap, but was never removed and consequently blocked the caching of the
simplified PHI expression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261485 91177308-0d34-0410-b5e6-96231b3b80d8
it to actually test the new pass manager AA wiring.
This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.
Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.
Differential Revision: http://reviews.llvm.org/D17372
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@261403 91177308-0d34-0410-b5e6-96231b3b80d8