There is no point in lowering a dbg.declare describing an alloca that
has volatile loads or stores as users, since the alloca cannot be
elided. Lowering the dbg.declare will result in larger debug info that
may also have worse coverage than just describing the alloca.
rdar://problem/34496278
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@327092 91177308-0d34-0410-b5e6-96231b3b80d8
In stage2 -O3 builds of llc, this results in small but measurable
increases in the number of variables with locations, and in the number
of unique source variables overall.
(According to llvm-dwarfdump --statistics, there are 123 additional
variables with locations, which is just a 0.006% improvement).
The size of the .debug_loc section of the llc dsym increases by 0.004%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@326629 91177308-0d34-0410-b5e6-96231b3b80d8
In stage2 -O3 builds of llc, this results in a 0.3% increase in the
number of variables with locations, and a 0.2% increase in the number of
unique source variables overall.
The size of the .debug_loc section of the llc dsym increases by 0.5%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@326621 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch is an enhancement to propagate dbg.value information when Phis are created on behalf of LCSSA.
I noticed a case where a value carried across a loop was reported as <optimized out>.
Specifically this case:
```
int bar(int x, int y) {
return x + y;
}
int foo(int size) {
int val = 0;
for (int i = 0; i < size; ++i) {
val = bar(val, i); // Both val and i are correct
}
return val; // <optimized out>
}
```
In the above case, after all of the interesting computation completes our value
is reported as "optimized out." This change will add a dbg.value to correct this.
This patch also moves the dbg.value insertion routine from LoopRotation.cpp
into Local.cpp, so that we can share it in both places (LoopRotation and LCSSA).
Reviewers: mzolotukhin, aprantl, vsk, davide
Reviewed By: aprantl, vsk
Subscribers: dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D42551
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325926 91177308-0d34-0410-b5e6-96231b3b80d8
According to the current coverage report salvageDebugInfo() is called
5.12 million times during testing and almost always returns early.
The early return depends on LocalAsMetadata::getIfExists returning null,
which involves a DenseMap lookup in an LLVMContextImpl. We can probably
speed this up by simply checking the IsUsedByMD bit in Value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325738 91177308-0d34-0410-b5e6-96231b3b80d8
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325102 91177308-0d34-0410-b5e6-96231b3b80d8
We already try to salvage debug values from no-op bitcasts and inttoptr
instructions: we should handle ptrtoint instructions as well.
This saves an additional 24,444 debug values in a stage2 build of clang,
and (according to llvm-dwarfdump --statistics) provides an additional
289 unique source variables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@324982 91177308-0d34-0410-b5e6-96231b3b80d8
Here are the number of additional debug values salvaged in a stage2
build of clang:
63 SALVAGE: MUL
1250 SALVAGE: SDIV
(No values were salvaged from `srem` instructions in this experiment,
but it's a simple case to handle so we might as well.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@324976 91177308-0d34-0410-b5e6-96231b3b80d8
Here are the number of additional debug values salvaged in a stage2
build of clang:
1912 SALVAGE: ASHR
405 SALVAGE: LSHR
249 SALVAGE: SHL
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@324975 91177308-0d34-0410-b5e6-96231b3b80d8
Inserting a dbg.value instruction at the start of a basic block with a
landingpad instruction triggers a verifier failure. We should be OK if
we insert the instruction a bit later.
Speculative fix for the bot failure described here:
https://reviews.llvm.org/D42551
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@323482 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perform the
preversation was minimally altered and simply marked as
preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements such as threading across loop headers.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: mgorny, dmgreen, kuba, rnk, rsmith, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@322401 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@321825 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@320612 91177308-0d34-0410-b5e6-96231b3b80d8
Revert "[SROA] Propagate !range metadata when moving loads."
Revert "[Mem2Reg] Clang-format unformatted parts of this file. NFCI."
Davide says they broke a bot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319131 91177308-0d34-0410-b5e6-96231b3b80d8
This tries to propagate !range metadata to a pre-existing load
when a load is optimized out. This is done instead of adding an
assume because converting loads to and from assumes creates a
lot of IR.
Patch by Ariel Ben-Yehuda.
Differential Revision: https://reviews.llvm.org/D37216
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@319096 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instcombine (and probably other passes) sometimes want to change the
type of an alloca. To do this, they generally create a new alloca with
the desired type, create a bitcast to make the new pointer type match
the old pointer type, replace all uses with the cast, and then simplify
the casts. We already knew how to salvage dbg.value instructions when
removing casts, but we can extend it to cover dbg.addr and dbg.declare.
Fixes a debug info quality issue uncovered in Chromium in
http://crbug.com/784609
Reviewers: aprantl, vsk
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40042
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318203 91177308-0d34-0410-b5e6-96231b3b80d8
This preserves the debug info for the cast operation in the original location.
rdar://problem/33460652
Reapplied r317340 with the test moved into an ARM-specific directory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317375 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This reverts r316612 to reapply r316582. The buildbot failure was unrelated to this commit.
Reviewers:
Subscribers:
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316669 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: For some irreducible CFG the domtree nodes might be dead, do not update domtree for dead nodes.
Reviewers: kuhar, dberlin, hfinkel
Reviewed By: kuhar
Subscribers: llvm-commits, mcrosier
Differential Revision: https://reviews.llvm.org/D38960
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@316582 91177308-0d34-0410-b5e6-96231b3b80d8
Causes a segfault on a builtbot (and in our internal bootstrapping of
Clang). See Eli's response on the commit thread.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314589 91177308-0d34-0410-b5e6-96231b3b80d8
JumpThreading now preserves dominance and lazy value information across the
entire pass. The pass manager is also informed of this preservation with
the goal of DT and LVI being recalculated fewer times overall during
compilation.
This change prepares JumpThreading for enhanced opportunities; particularly
those across loop boundaries.
Patch by: Brian Rzycki <b.rzycki@samsung.com>,
Sebastian Pop <s.pop@samsung.com>
Differential revision: https://reviews.llvm.org/D37528
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314435 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313905 91177308-0d34-0410-b5e6-96231b3b80d8
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313876 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@313825 91177308-0d34-0410-b5e6-96231b3b80d8
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309426 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It is possible for some passes to materialize a call to a libcall (ex: ldexp, exp2, etc),
but these passes will not mark the call as a gc-leaf-function. All libcalls are
actually gc-leaf-functions, so we change llvm::callsGCLeafFunction() to tell us that
available libcalls are equivalent to gc-leaf-function calls.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35840
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309291 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As metioned in https://reviews.llvm.org/D34576, checkings in
`collectConstantCandidates` can be replaced by using
`llvm::canReplaceOperandWithVariable`.
The only special case is that `collectConstantCandidates` return false for
all `IntrinsicInst` but it is safe for us to collect constant candidates from
`IntrinsicInst`.
Reviewers: pirama, efriedma, srhines
Reviewed By: efriedma
Subscribers: llvm-commits, javed.absar
Differential Revision: https://reviews.llvm.org/D34921
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307587 91177308-0d34-0410-b5e6-96231b3b80d8
It referenced a wrong function name, and didn't mention what the
second argument did. This should be slightly more accurate now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307425 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
`Instruction::Switch`: only first operand can be set to a non-constant value.
`Instruction::InsertValue` both the first and the second operand can be set to a non-constant value.
`Instruction::Alloca` return true for non-static allocation.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: srhines, pirama, llvm-commits
Differential Revision: https://reviews.llvm.org/D34905
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307294 91177308-0d34-0410-b5e6-96231b3b80d8
metadata out of InstCombine and into helpers.
NFC, this just exposes the logic used by InstCombine when propagating
metadata from one load instruction to another. The plan is to use this
in SROA to address PR32902.
If anyone has better ideas about how to factor this or name variables,
I'm all ears, but this seemed like a pretty good start and lets us make
progress on the PR.
This is based on a patch by Ariel Ben-Yehuda (D34285).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306267 91177308-0d34-0410-b5e6-96231b3b80d8
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8