shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
This is slightly more interesting than the previous batch of changes.
Specifically:
1. We refactor getSpillWeight to take a MachineBlockFrequencyInfo (MBFI)
object. This enables us to completely encapsulate the actual manner we
use the MachineBlockFrequencyInfo to get our spill weights. This yields
cleaner code since one does not need to fetch the actual block frequency
before getting the spill weight if all one wants it the spill weight. It
also gives us access to entry frequency which we need for our
computation.
2. Instead of having getSpillWeight take a MachineBasicBlock (as one
might think) to look up the block frequency via the MBFI object, we
instead take in a MachineInstr object. The reason for this is that the
method is supposed to return the spill weight for an instruction
according to the comments around the function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197296 91177308-0d34-0410-b5e6-96231b3b80d8
The stack coloring pass has code to delete stores and loads that become
trivially dead after coloring. Extend it to cope with single instructions
that copy from one frame index to another.
The testcase happens to show an example of this kicking in at the moment.
It did occur in Real Code too though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185705 91177308-0d34-0410-b5e6-96231b3b80d8
The stack coloring pass renumbered frame indexes with a loop of the form:
for each frame index FI
for each instruction I that uses FI
for each use of FI in I
rename FI to FI'
This caused problems if an instruction used two frame indexes F0 and F1
and if F0 was renamed to F1 and F1 to F2. The first time we visited the
instruction we changed F0 to F1, then we changed both F1s to F2.
In other words, the problem was that SSRefs recorded which instructions
used an FI, but not which MachineOperands and MachineMemOperands within
that instruction used it.
This is easily fixed for MachineOperands by walking the instructions
once and processing each operand in turn. There's already a loop to
do that for dead store elimination, so it seemed more efficient to
fuse the two at the block level.
MachineMemOperands are more tricky because they can be shared between
instructions. The patch handles them by making SSRefs an array of
MachineMemOperands rather than an array of MachineInstrs. We might end
up processing the same MachineMemOperand twice, but that's OK because
we always know from the SSRefs index what the original frame index was.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185703 91177308-0d34-0410-b5e6-96231b3b80d8
The main advantages here are way better heuristics, taking into account not
just loop depth but also __builtin_expect and other static heuristics and will
eventually learn how to use profile info. Most of the work in this patch is
pushing the MachineBlockFrequencyInfo analysis into the right places.
This is good for a 5% speedup on zlib's deflate (x86_64), there were some very
unfortunate spilling decisions in its hottest loop in longest_match(). Other
benchmarks I tried were mostly neutral.
This changes register allocation in subtle ways, update the tests for it.
2012-02-20-MachineCPBug.ll was deleted as it's very fragile and the instruction
it looked for was gone already (but the FileCheck pattern picked up unrelated
stuff).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184105 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
because LiveStackAnalysis was not preserved by VirtRegWriter. This caused
big stack usage regression in some cases.
rdar://12340383
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164408 91177308-0d34-0410-b5e6-96231b3b80d8
Based on CR feedback from r162301 and Craig Topper's refactoring in r162347
here are a few other places that could use the same API (& in one instance drop
a Function.h dependency).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162367 91177308-0d34-0410-b5e6-96231b3b80d8
Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.
While cleaning up declarations, cleaned up comments (sorry for large diff).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150100 91177308-0d34-0410-b5e6-96231b3b80d8
It was off by default.
The new register allocators don't have the problems that made it
necessary to reallocate registers during stack slot coloring.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144481 91177308-0d34-0410-b5e6-96231b3b80d8
sink them into MC layer.
- Added MCInstrInfo, which captures the tablegen generated static data. Chang
TargetInstrInfo so it's based off MCInstrInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@134021 91177308-0d34-0410-b5e6-96231b3b80d8
physical register numbers.
This makes the hack used in LiveInterval official, and lets LiveInterval be
oblivious of stack slots.
The isPhysicalRegister() and isVirtualRegister() predicates don't know about
this, so when a variable may contain a stack slot, isStackSlot() should always
be tested first.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123128 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
EXTRACT_SUBREG no longer appears as a machine instruction. Use COPY instead.
Add isCopy() checks in many places using isMoveInstr() and isExtractSubreg().
The isMoveInstr hook will be removed later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107879 91177308-0d34-0410-b5e6-96231b3b80d8
If you have a setjmp/longjmp situation, it's possible for stack slot coloring to
reuse a stack slot before it's really dead. For instance, if we have something
like this:
1: y = g;
x = sigsetjmp(env, 0);
switch (x) {
case 1:
/* ... */
goto run;
case 0:
run:
do_run(); /* marked as "no return" */
break;
case 3:
if (...) {
/* ... */
goto run;
}
/* ... */
break;
}
2: g = y;
"y" may be put onto the stack, so the expression "g = y" is relying upon the
fact that the stack slot containing "y" isn't modified between (1) and (2). But
it can be, because of the "no return" calls in there. A longjmp might come back
with 3, modify the stack slot, and then go to case 0. And it's perfectly
acceptable to reuse the stack slot there because there's no CFG flow from case 3
to (2).
The fix is to disable certain optimizations in these situations. Ideally, we'd
disable them for all "returns twice" functions. But we don't support that
attribute. Check for "setjmp" and "sigsetjmp" instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104640 91177308-0d34-0410-b5e6-96231b3b80d8