This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289982 91177308-0d34-0410-b5e6-96231b3b80d8
It currently is in an unnamed namespace and then it shouldn't be used
from something in the header file. This actually triggers a warning with
GCC:
../include/llvm/IR/Verifier.h:39:7: warning: ‘llvm::TBAAVerifier’ has a field ‘llvm::TBAAVerifier::Diagnostic’ whose type uses the anonymous namespace [enabled by default]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289942 91177308-0d34-0410-b5e6-96231b3b80d8
This is intended to be used (in a later patch) by the BitcodeReader
to detect invalid TBAA and drop them when loading bitcode, so that
we don't break client that have legacy bitcode with possible invalid
TBAA.
Differential Revision: https://reviews.llvm.org/D27838
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289927 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289920 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289902 91177308-0d34-0410-b5e6-96231b3b80d8
This used to be allowed before r289402 by default (before r289402 you
could have TBAA metadata on any instruction), and while I'm not sure
that it helps, it does sound reasonable enough to not fail the verifier
and we have out-of-tree users who use this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289872 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@289402 91177308-0d34-0410-b5e6-96231b3b80d8
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288683 91177308-0d34-0410-b5e6-96231b3b80d8
analyses to have a common type which is enforced rather than using
a char object and a `void *` type when used as an identifier.
This has a number of advantages. First, it at least helps some of the
confusion raised in Justin Lebar's code review of why `void *` was being
used everywhere by having a stronger type that connects to documentation
about this.
However, perhaps more importantly, it addresses a serious issue where
the alignment of these pointer-like identifiers was unknown. This made
it hard to use them in pointer-like data structures. We were already
dodging this in dangerous ways to create the "all analyses" entry. In
a subsequent patch I attempted to use these with TinyPtrVector and
things fell apart in a very bad way.
And it isn't just a compile time or type system issue. Worse than that,
the actual alignment of these pointer-like opaque identifiers wasn't
guaranteed to be a useful alignment as they were just characters.
This change introduces a type to use as the "key" object whose address
forms the opaque identifier. This both forces the objects to have proper
alignment, and provides type checking that we get it right everywhere.
It also makes the types somewhat less mysterious than `void *`.
We could go one step further and introduce a truly opaque pointer-like
type to return from the `ID()` static function rather than returning
`AnalysisKey *`, but that didn't seem to be a clear win so this is just
the initial change to get to a reliably typed and aligned object serving
is a key for all the analyses.
Thanks to Richard Smith and Justin Lebar for helping pick plausible
names and avoid making this refactoring many times. =] And thanks to
Sean for the super fast review!
While here, I've tried to move away from the "PassID" nomenclature
entirely as it wasn't really helping and is overloaded with old pass
manager constructs. Now we have IDs for analyses, and key objects whose
address can be used as IDs. Where possible and clear I've shortened this
to just "ID". In a few places I kept "AnalysisID" to make it clear what
was being identified.
Differential Revision: https://reviews.llvm.org/D27031
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@287783 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286291 91177308-0d34-0410-b5e6-96231b3b80d8
DW_TAG_atomic_type was already included in Dwarf.defs and emitted correctly,
however Verifier didn't recognize it as valid.
Thus we introduce the following changes:
* Make DW_TAG_atomic_type valid tag for IR and DWARF (enabled only with -gdwarf-5)
* Add it to related docs
* Add DebugInfo tests
Differential Revision: https://reviews.llvm.org/D26144
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285624 91177308-0d34-0410-b5e6-96231b3b80d8
This came out of a discussion in https://reviews.llvm.org/D25285.
There used to be various other llvm.dbg.* nodes, but we don't support
upgrading them and we want to reserve the namespace for future uses.
This also removes an entirely obsolete and bitrotted testcase for PR7662.
Reapplies 283390 with a forgotten testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283400 91177308-0d34-0410-b5e6-96231b3b80d8
This came out of a discussion in https://reviews.llvm.org/D25285.
There used to be various other llvm.dbg.* nodes, but we don't support
upgrading them and we want to reserve the namespace for future uses.
This also removes an entirely obsolete and bitrotted testcase for PR7662.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@283390 91177308-0d34-0410-b5e6-96231b3b80d8
This is a follow-up to r268778 that adds a couple of missing cases,
most notably orphaned compile units.
rdar://problem/28193346
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281508 91177308-0d34-0410-b5e6-96231b3b80d8
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@281284 91177308-0d34-0410-b5e6-96231b3b80d8
Delete the dead code for Write(ilist_iterator) in the IR Verifier,
inline report(ilist_iterator) at its call sites in the MachineVerifier,
and use simple_ilist<>::iterator in SymbolTableListTraits.
The only remaining reference to ilist_iterator outside of the ilist
implementation is from MachineInstrBundleIterator. I'll get rid of that
in a follow-up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280565 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
[Coroutines] Part 9: Add cleanup subfunction.
This patch completes coroutine heap allocation elision. Now, the heap elision example from docs\Coroutines.rst compiles and produces expected result (see test/Transform/Coroutines/ex3.ll)
Intrinsic Changes:
* coro.free gets a token parameter tying it to coro.id to allow reliably discovering all coro.frees associated with a particular coroutine.
* coro.id gets an extra parameter that points back to a coroutine function. This allows to check whether a coro.id describes the enclosing function or it belongs to a different function that was later inlined.
CoroSplit now creates three subfunctions:
# f$resume - resume logic
# f$destroy - cleanup logic, followed by a deallocation code
# f$cleanup - just the cleanup code
CoroElide pass during devirtualization replaces coro.destroy with either f$destroy or f$cleanup depending whether heap elision is performed or not.
Other fixes, improvements:
* Fixed buglet in Shape::buildFrame that was not creating coro.save properly if coroutine has more than one suspend point.
* Switched to using variable width suspend index field (no longer limited to 32 bit index field can be as little as i1 or as large as i<whatever-size_t-is>)
Reviewers: majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23844
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279971 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
1. Make coroutine representation more robust against optimization that may duplicate instruction by introducing coro.id intrinsics that returns a token that will get fed into coro.alloc and coro.begin. Due to coro.id returning a token, it won't get duplicated and can be used as reliable indicator of coroutine identify when a particular coroutine call gets inlined.
2. Move last three arguments of coro.begin into coro.id as they will be shared if coro.begin will get duplicated.
3. doc + test + code updated to support the new intrinsic.
Reviewers: mehdi_amini, majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23412
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278481 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the 4c patch of the coroutine series. CoroElide pass now checks if PostSplit coro.begin
is referenced by coro.subfn.addr intrinsics. If so replace coro.subfn.addrs with an appropriate coroutine
subfunction associated with that coro.begin.
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization <= we are here
5.Add CGSCC restart trigger + tests.
6.Add coroutine heap elision + tests.
7.Add the rest of the logic (split into more patches)
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277908 91177308-0d34-0410-b5e6-96231b3b80d8
This is the forth patch in the coroutine series. CoroEaly pass now lowers coro.resume
and coro.destroy intrinsics by replacing them with an indirect call to an address
returned by coro.subfn.addr intrinsic. This is done so that CGPassManager recognizes
devirtualization when CoroElide replaces a call to coro.subfn.addr with an appropriate
function address.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22998
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277765 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This commit changes the Verifier class to accept a Module via the
constructor to make it obvious that a specific instance of the class is
only intended to work with a specific module. The `updateModule` setter
(despite being private) was making this fact less transparent.
There are fields in the `Verifier` class like `DeoptimizeDeclarations`
and `GlobalValueVisited` which are module specific, so a given
Verifier instance will not in fact work across multiple modules today.
This change just makes that more obvious.
The motivation is to make it easy to get to the datalayout of the
module unambiguously. That is required to verify that `inttoptr` and
`ptrtoint` constant expressions are well typed in the face of
non-integral pointer types.
Reviewers: dexonsmith, bkramer, majnemer, chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D23040
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277409 91177308-0d34-0410-b5e6-96231b3b80d8
This broke some out-of-tree AMDGPU tests that relied on the old behavior
wherein isIntrinsic() would return true for any function that starts
with "llvm.". And in general that change will not play nicely with
out-of-tree backends.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277087 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change adds a `ni` specifier in the `datalayout` string to denote
pointers in some given address spaces as "non-integral", and adds some
typing rules around these special pointers.
Reviewers: majnemer, chandlerc, atrick, dberlin, eli.friedman, tstellarAMD, arsenm
Subscribers: arsenm, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22488
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277085 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
getName() involves a hashtable lookup, so is expensive given how
frequently isIntrinsic() is called. (In particular, many users cast to
IntrinsicInstr or one of its subclasses before calling
getIntrinsicID().)
This has an incidental functional change: Before, isIntrinsic() would
return true for any function whose name started with "llvm.", even if it
wasn't properly an intrinsic. The new behavior seems more correct to
me, because it's strange to say that isIntrinsic() is true, but
getIntrinsicId() returns "not an intrinsic".
Some callers want the old behavior -- they want to know whether the
caller is a recognized intrinsic, or might be one in some other version
of LLVM. For them, we added Function::hasLLVMReservedName(), which
checks whether the name starts with "llvm.".
This change is good for a 1.5% e2e speedup compiling a large Eigen
benchmark.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@276942 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This complements the earlier addition of IntrWriteMem and IntrWriteArgMem
LLVM intrinsic properties, see D18291.
Also start using the attribute for memset, memcpy, and memmove intrinsics,
and remove their special-casing in BasicAliasAnalysis.
Reviewers: reames, joker.eph
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18714
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@274485 91177308-0d34-0410-b5e6-96231b3b80d8
Move Verifier::verifyIntrinsicType to Intrinsics::matchIntrinsicsType. Will be used to accumulate overloaded types of a given intrinsic by the upcoming patch to fix intrinsics names when overloaded types are renamed.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D19372
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273424 91177308-0d34-0410-b5e6-96231b3b80d8
This change is motivated by an upcoming change to the metadata representation
used for CFI. The indirect function call checker needs type information for
external function declarations in order to correctly generate jump table
entries for such declarations. We currently associate such type information
with declarations using a global metadata node, but I plan [1] to move all
such metadata to global object attachments.
In bitcode, metadata attachments for function declarations appear in the
global metadata block. This seems reasonable to me because I expect metadata
attachments on declarations to be uncommon. In the long term I'd also expect
this to be the case for CFI, because we'd want to use some specialized bitcode
format for this metadata that could be read as part of the ThinLTO thin-link
phase, which would mean that it would not appear in the global metadata block.
To solve the lazy loaded metadata issue I was seeing with D20147, I use the
same bitcode representation for metadata attachments for global variables as I
do for function declarations. Since there's a use case for metadata attachments
in the global metadata block, we might as well use that representation for
global variables as well, at least until we have a mechanism for lazy loading
global variables.
In the assembly format, the metadata attachments appear after the "declare"
keyword in order to avoid a parsing ambiguity.
[1] http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21052
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@273336 91177308-0d34-0410-b5e6-96231b3b80d8
pass manager passes' `run` methods.
This removes a bunch of SFINAE goop from the pass manager and just
requires pass authors to accept `AnalysisManager<IRUnitT> &` as a dead
argument. This is a small price to pay for the simplicity of the system
as a whole, despite the noise that changing it causes at this stage.
This will also helpfull allow us to make the signature of the run
methods much more flexible for different kinds af passes to support
things like intelligently updating the pass's progression over IR units.
While this touches many, many, files, the changes are really boring.
Mostly made with the help of my trusty perl one liners.
Thanks to Sean and Hal for bouncing ideas for this with me in IRC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272978 91177308-0d34-0410-b5e6-96231b3b80d8
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272709 91177308-0d34-0410-b5e6-96231b3b80d8
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@272126 91177308-0d34-0410-b5e6-96231b3b80d8
Arrange to call verify(Function &) on each function, followed by
verify(Module &), whether the verifier is being used from the pass or
from verifyModule(). As a side effect, this fixes an issue that caused
us not to call verify(Function &) on unmaterialized functions from
verifyModule().
Differential Revision: http://reviews.llvm.org/D21042
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271956 91177308-0d34-0410-b5e6-96231b3b80d8
Remove previously unreachable code that verifies that a function definition has
an entry block. By definition, a function definition has at least one block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271948 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
It isn't clear what is the operational meaning of loading or storing an
unsized types, since it cannot be lowered into something meaningful.
Since there does not seem to be any practical need for it either, make
such loads and stores illegal IR.
Reviewers: majnemer, chandlerc
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20846
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271402 91177308-0d34-0410-b5e6-96231b3b80d8