Summary:
This supersedes http://reviews.llvm.org/D4010, hopefully properly
dealing with the JIT case and also adds an actual test case.
DwarfContext was basically already usable for the JIT (and back when
we were overwriting ELF files it actually worked out of the box by
accident), but in order to resolve relocations correctly it needs
to know the load address of the section.
Rather than trying to get this out of the ObjectFile or requiring
the user to create a new ObjectFile just to get some debug info,
this adds the capability to pass in that info directly.
As part of this I separated out part of the LoadedObjectInfo struct
from RuntimeDyld, since it is now required at a higher layer.
Reviewers: lhames, echristo
Reviewed By: echristo
Subscribers: vtjnash, friss, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D6961
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237961 91177308-0d34-0410-b5e6-96231b3b80d8
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233509 91177308-0d34-0410-b5e6-96231b3b80d8
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:51:09 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add header that was accidentally left out of r231724.
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:44:13 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add symbol flags to symbols in RuntimeDyld. Thread the
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231731 91177308-0d34-0410-b5e6-96231b3b80d8
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231724 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for adding PDB support to LLVM, this moves the
DWARF parsing code to its own subdirectory under DebugInfo, and
renames LLVMDebugInfo to LLVMDebugInfoDWARF.
This is purely a mechanical / build system change.
Differential Revision: http://reviews.llvm.org/D7269
Reviewed by: Eric Christopher
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227586 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, when loading an object file, RuntimeDyld (1) took ownership of the
ObjectFile instance (and associated MemoryBuffer), (2) potentially modified the
object in-place, and (3) returned an ObjectImage that managed ownership of the
now-modified object and provided some convenience methods. This scheme accreted
over several years as features were tacked on to RuntimeDyld, and was both
unintuitive and unsafe (See e.g. http://llvm.org/PR20722).
This patch fixes the issue by removing all ownership and in-place modification
of object files from RuntimeDyld. Existing behavior, including debugger
registration, is preserved.
Noteworthy changes include:
(1) ObjectFile instances are now passed to RuntimeDyld by const-ref.
(2) The ObjectImage and ObjectBuffer classes have been removed entirely, they
existed to model ownership within RuntimeDyld, and so are no longer needed.
(3) RuntimeDyld::loadObject now returns an instance of a new class,
RuntimeDyld::LoadedObjectInfo, which can be used to construct a modified
object suitable for registration with the debugger, following the existing
debugger registration scheme.
(4) The JITRegistrar class has been removed, and the GDBRegistrar class has been
re-written as a JITEventListener.
This should fix http://llvm.org/PR20722 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222810 91177308-0d34-0410-b5e6-96231b3b80d8
sections.
This allows fine-grained control of the memory layout of hypothetical target
processes for testing purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217122 91177308-0d34-0410-b5e6-96231b3b80d8
mode.
This will cause -verify mode to report failure when RuntimeDyld encounters an
internal error (e.g. overflows in relocation computations). Previously we had
let these errors slip past unreported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214925 91177308-0d34-0410-b5e6-96231b3b80d8
use in -verify mode.
This patch adds three hidden command line options to llvm-rtdyld:
-target-addr-start <start-addr> : Specify the start of the virtual address
space on the phony target.
-target-addr-end <end-addr> : Specify the end of the virtual address space
on the phony target.
-target-section-sep <sep> : Specify the separation (in bytes) between the
end of one section and the start of the next.
These options automatically default to sane values for the target platform. In
particular, they allow narrow (e.g. 32-bit, 16-bit) targets to be tested from
wider (e.g. 64-bit, 32-bit) hosts without overflowing pointers.
The section separation option defaults to zero, but can be set to a large number
(e.g. 1 << 32) to force large separations between sections in order to
stress-test large-code-model code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214255 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a 'stub_addr' builtin that can be used to find the address
of the stub for a given (<file>, <section>, <symbol>) tuple. This address can be
used both to verify the contents of stubs (by loading from the returned address)
and to verify references to stubs (by comparing against the returned address).
Example (1) - Verifying stub contents:
Load 8 bytes (assuming a 64-bit target) from the stub for 'x' in the __text
section of f.o, and compare that value against the addres of 'x'.
# rtdyld-check: *{8}(stub_addr(f.o, __text, x) = x
Example (2) - Verifying references to stubs:
Decode the immediate of the instruction at label 'l', and verify that it's
equal to the offset from the next instruction's PC to the stub for 'y' in the
__text section of f.o (i.e. it's the correct PC-rel difference).
# rtdyld-check: decode_operand(l, 4) = stub_addr(f.o, __text, y) - next_pc(l)
l:
movq y@GOTPCREL(%rip), %rax
Since stub inspection requires cooperation with RuntimeDyldImpl this patch
pimpl-ifies RuntimeDyldChecker. Its implementation is moved in to a new class,
RuntimeDyldCheckerImpl, that has access to the definition of RuntimeDyldImpl.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213698 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a "-verify" mode to the llvm-rtdyld utility. In verify mode,
llvm-rtdyld will test supplied expressions against the linked program images
that it creates in memory. This scheme can be used to verify the correctness
of the relocation logic applied by RuntimeDyld.
The expressions to test will be read out of files passed via the -check option
(there may be more than one of these). Expressions to check are extracted from
lines of the form:
# rtdyld-check: <expression>
This system is designed to fit the llvm-lit regression test workflow. It is
format and target agnostic, and supports verification of images linked for
remote targets. The expression language is defined in
llvm/include/llvm/RuntimeDyldChecker.h . Examples can be found in
test/ExecutionEngine/RuntimeDyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211956 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210803 91177308-0d34-0410-b5e6-96231b3b80d8
libraries before linking and executing the target objects.
This allows programs that use external calls (e.g. to libc) to be run under
llvm-rtdyld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208739 91177308-0d34-0410-b5e6-96231b3b80d8
Immutable DILineInfo doesn't bring any benefits and complicates
code. Also, use std::string instead of SmallString<16> for file
and function names - their length can vary significantly.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206654 91177308-0d34-0410-b5e6-96231b3b80d8
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203083 91177308-0d34-0410-b5e6-96231b3b80d8
None of the object file formats reported error on iterator increment. In
retrospect, that is not too surprising: no object format stores symbols or
sections in a linked list or other structure that requires chasing pointers.
As a consequence, all error checking can be done on begin() and end().
This reduces the text segment of bin/llvm-readobj in my machine from 521233 to
518526 bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@200442 91177308-0d34-0410-b5e6-96231b3b80d8
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
the JIT object (including XFAIL an ARM test that now needs fixing). Also renames
internal function for consistency.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182085 91177308-0d34-0410-b5e6-96231b3b80d8
For Mach-O there were 2 implementations for parsing object files. A
standalone llvm/Object/MachOObject.h and llvm/Object/MachO.h which
implements the generic interface in llvm/Object/ObjectFile.h.
This patch adds the missing features to MachO.h, moves macho-dump to
use MachO.h and removes ObjectFile.h.
In addition to making sure that check-all is clean, I checked that the
new version produces exactly the same output in all Mach-O files in a
llvm+clang build directory (including executables and shared
libraries).
To test the performance, I ran macho-dump over all the files in a
llvm+clang build directory again, but this time redirecting the output
to /dev/null. Both the old and new versions take about 4.6 seconds
(2.5 user) to finish.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180624 91177308-0d34-0410-b5e6-96231b3b80d8
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169252 91177308-0d34-0410-b5e6-96231b3b80d8
It's more flexible for MCJIT tasks, in addition it's provides a invalidation instruction cache for code sections which will be used before JIT code will be executed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156933 91177308-0d34-0410-b5e6-96231b3b80d8
1. The main works will made in the RuntimeDyLdImpl with uses the ObjectFile class. RuntimeDyLdMachO and RuntimeDyLdELF now only parses relocations and resolve it. This is allows to make improvements of the RuntimeDyLd more easily. In addition the support for COFF can be easily added.
2. Added ARM relocations to RuntimeDyLdELF.
3. Added support for stub functions for the ARM, allowing to do a long branch.
4. Added support for external functions that are not loaded from the object files, but can be loaded from external libraries. Now MCJIT can correctly execute the code containing the printf, putc, and etc.
5. The sections emitted instead functions, thanks Jim Grosbach. MemoryManager.startFunctionBody() and MemoryManager.endFunctionBody() have been removed.
6. MCJITMemoryManager.allocateDataSection() and MCJITMemoryManager. allocateCodeSection() used JMM->allocateSpace() instead of JMM->allocateCodeSection() and JMM->allocateDataSection(), because I got an error: "Cannot allocate an allocated block!" with object file contains more than one code or data sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153754 91177308-0d34-0410-b5e6-96231b3b80d8