Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123044 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122995 91177308-0d34-0410-b5e6-96231b3b80d8
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121120 91177308-0d34-0410-b5e6-96231b3b80d8
catastrophic compilation time in the event of unreasonable LLVM
IR. Code quality is a separate issue--someone upstream needs to do a
better job of reducing to llvm.memcpy. If the situation can be reproduced with
any supported frontend, then it will be a separate bug.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118904 91177308-0d34-0410-b5e6-96231b3b80d8
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118167 91177308-0d34-0410-b5e6-96231b3b80d8
memory, so a MachineMemOperand is useful (not propagated
into the MachineInstr yet). No functional change except
for dump output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117413 91177308-0d34-0410-b5e6-96231b3b80d8
setup they require. Use this for ARM/Darwin to rematerialize the base
pointer from the frame pointer when required. rdar://8564268
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116879 91177308-0d34-0410-b5e6-96231b3b80d8
The x86_mmx type is used for MMX intrinsics, parameters and
return values where these use MMX registers, and is also
supported in load, store, and bitcast.
Only the above operations generate MMX instructions, and optimizations
do not operate on or produce MMX intrinsics.
MMX-sized vectors <2 x i32> etc. are lowered to XMM or split into
smaller pieces. Optimizations may occur on these forms and the
result casted back to x86_mmx, provided the result feeds into a
previous existing x86_mmx operation.
The point of all this is prevent optimizations from introducing
MMX operations, which is unsafe due to the EMMS problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115243 91177308-0d34-0410-b5e6-96231b3b80d8
edited during emission.
If the basic block ends in a switch that gets lowered to a jump table, any
phis at the default edge were getting updated wrong. The jump table data
structure keeps a pointer to the header blocks that wasn't getting updated
after the MBB is split.
This bug was exposed on 32-bit Linux when disabling critical edge splitting in
codegen prepare.
The fix is to uipdate stale MBB pointers whenever a block is split during
emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115191 91177308-0d34-0410-b5e6-96231b3b80d8
when the unconditional branch destination is the fallthrough block. The
canonicalization makes it easier to allow optimizations on DAGs to invert
conditional branches. The branch folding pass (and AnalyzeBranch) will clean up
the unnecessary unconditional branches later.
This is one of the patches leading up to disabling codegen prepare critical edge
splitting.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114630 91177308-0d34-0410-b5e6-96231b3b80d8
I think I've audited all uses, so it should be dependable for address spaces,
and the pointer+offset info should also be accurate when there.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114464 91177308-0d34-0410-b5e6-96231b3b80d8