A linkonce_odr member of a COMDAT shouldn't be dropped if we need to
keep the entire COMDAT group.
This fixes PR21191.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219283 91177308-0d34-0410-b5e6-96231b3b80d8
The icmp-select-icmp optimization targets select-icmp.eq
only. This is now ensured by testing the branch predicate
explictly. This commit also includes the test case for pr21199.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219282 91177308-0d34-0410-b5e6-96231b3b80d8
COFF normally doesn't allow us to describe the alignment of COMMON
symbols.
It turns out that most linkers use the symbol size as a hint as to how
aligned the symbol should be.
However the BFD folks have added a .drectve command, which we
now support as of r219229, that allows us to specify the alignment
precisely. With this in mind, stop rounding sizes up.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219281 91177308-0d34-0410-b5e6-96231b3b80d8
DWARF in COFF utilizes several relocations. Implement support for them
in RelocVisitor to support llvm-dwarfdump.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219280 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Fix pr21099
The pseudocode of what we were doing (spread through two functions) was:
if (operand.doesNotFitIn32Bits())
Opc.initializeWithFoo();
if (operand < 0)
operand = -operand;
if (operand.doesFitIn8Bits())
Opc.initializeWithBar();
else if (operand.doesFitIn32Bits())
Opc.initializeWithBlah();
doStuff(Opc);
So for operand == INT32_MIN, Opc was never initialized because the operand changes
from fitting in 32 bits to not fitting, causing the various bugs/error messages
noted by pr21099.
This patch adds an extra test at the beginning for this case, and an
llvm_unreachable to have better error message if the operand ends up
not fitting in 32-bits at the end.
Test Plan: new test + make check
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5655
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219257 91177308-0d34-0410-b5e6-96231b3b80d8
This is somewhat the inverse of how similar bugs in DAE and ArgPromo
manifested and were addressed. In those passes, individual call sites
were visited explicitly, and then the old function was deleted. This
left the debug info with a null llvm::Function* that needed to be
updated to point to the new function.
In the case of DFSan, it RAUWs the old function with the wrapper, which
includes debug info. So now the debug info refers to the wrapper, which
doesn't actually have any instructions with debug info in it, so it is
ignored entirely - resulting in a DW_TAG_subprogram with no high/low pc,
etc. Instead, fix up the debug info to refer to the original function
after the RAUW messed it up.
Reviewed/discussed with Peter Collingbourne on the llvm-dev mailing
list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219249 91177308-0d34-0410-b5e6-96231b3b80d8
`LoopUnrollPass` says that it preserves `LoopInfo` -- make it so. In
particular, tell `LoopInfo` about copies of inner loops when unrolling
the outer loop.
Conservatively, also tell `ScalarEvolution` to forget about the original
versions of these loops, since their inputs may have changed.
Fixes PR20987.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219241 91177308-0d34-0410-b5e6-96231b3b80d8
Added a FIXME coment instead, we need to handle the case where the
two DS instructions being compared have different numbers of operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219236 91177308-0d34-0410-b5e6-96231b3b80d8
The GNU linker supports an -aligncomm directive that allows for power-of-2
alignment of common data. Add support to emit this directive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219229 91177308-0d34-0410-b5e6-96231b3b80d8
This optimization tries to convert switch instructions that are used to select a value with only 2 unique cases + default block
to a select or a couple of selects (depending if the default block is reachable or not).
The typical case this optimization wants to be able to optimize is this one:
Example:
switch (a) {
case 10: %0 = icmp eq i32 %a, 10
return 10; %1 = select i1 %0, i32 10, i32 4
case 20: ----> %2 = icmp eq i32 %a, 20
return 2; %3 = select i1 %2, i32 2, i32 %1
default:
return 4;
}
It also sets the base for further optimizations that are planned and being reviewed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219223 91177308-0d34-0410-b5e6-96231b3b80d8
After some stellar (& inspired) help from Reid Kleckner providing a test
case for some rather unstable undefined behavior showing up as
assertions produced by r214761, I was able to fix this issue in DAE
involving the application of both varargs removal, followed by normal
argument removal.
Indeed I introduced this same bug into ArgumentPromotion (r212128) by
copying the code from DAE, and when I fixed the bug in ArgPromo
(r213805) and commented in that patch that I didn't need to address the
same issue in DAE because it was a single pass. Turns out it's two pass,
one for the varargs and one for the normal arguments, so the same fix is
needed (at least during varargs removal). So here it is.
(the observable/net effect of this bug, even when it didn't result in
assertion failure, is that debug info would describe the DAE'd function
in the abstract, but wouldn't provide high/low_pc, variable locations,
line table, etc (it would appear as though the function had been
entirely optimized away), see the original PR14016 for details of the
general problem)
I'm not recommitting the assertion just yet, as there's been another
regression of it since I last tried. It might just be a few test cases
weren't adequately updated after Adrian or Duncan's recent schema
changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219210 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
According to the ABI documentation, f128 and {f128} should both be returned
in $f0 and $f2. However, this doesn't match GCC's behaviour which is to
return f128 in $f0 and $f2, but {f128} in $f0 and $f1.
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5578
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219196 91177308-0d34-0410-b5e6-96231b3b80d8
Unfortunately, this isn't easy to fix since there's no simple way to figure out from the disassembler tables whether the W-bit is being used to select a 64-bit GPR or if its a required part of the opcode. The fix implemented here just looks for "64" in the instruction name and ignores the W-bit in 32-bit mode if its present.
Fixes PR21169.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219194 91177308-0d34-0410-b5e6-96231b3b80d8
If we require a single member of a comdat, require all of the other
members as well.
This fixes PR20981.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219191 91177308-0d34-0410-b5e6-96231b3b80d8
The plugin API doesn't have the notion of linkonce, only weak. It is up to the
plugin to figure out if a symbol used only for the symbol table can be dropped.
In particular, it has to avoid dropping a linkonce_odr selected by gold if there
is also a weak_odr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219188 91177308-0d34-0410-b5e6-96231b3b80d8
The code already folds sign-/zero-extends, but only if they are arguments to
mul and shift instructions. This extends the code to also fold them when they
are direct inputs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219187 91177308-0d34-0410-b5e6-96231b3b80d8
Tiny enhancement to the address computation code to also fold sub instructions
if the rhs is constant and can be folded into the offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219186 91177308-0d34-0410-b5e6-96231b3b80d8
This commit fixes an issue with sign-/zero-extending loads that was discovered
by Richard Barton.
We use now the correct load instructions for sign-extending loads to 64bit. Also
updated and added more unit tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219185 91177308-0d34-0410-b5e6-96231b3b80d8
The call to copyAttributesFrom will copy the visibility, which might assert
if it were to produce something invalid like "internal hidden". We avoid it
by first creating the replacement with the original linkage and then setting
it to internal affter the call to copyAttributesFrom.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219184 91177308-0d34-0410-b5e6-96231b3b80d8
When creating an internal function replacement for use in an alias we were
not remapping the argument uses in the instructions to point to the new
arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219177 91177308-0d34-0410-b5e6-96231b3b80d8
Takes care of the assert that caused build fails.
Rather than asserting the code checks now that the definition
and use are in the same block, and does not attempt
to optimize when that is not the case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219175 91177308-0d34-0410-b5e6-96231b3b80d8
The patch's author points out that, despite the function's documentation,
getSetCCResultType is only used to get the SETCC result type (with one
here-removed problematic exception). In one case, getSetCCResultType was being
used to get the predicate type to use for a SELECT node, and then
SIGN_EXTENDing (or truncating) to get the input predicate to match that type.
Unfortunately, this was happening inside visitSIGN_EXTEND, and creating new
SIGN_EXTEND nodes was causing an infinite loop. In addition, this behavior was
wrong if a target was not using ZeroOrNegativeOneBooleanContent. Lastly, the
extension/truncation seems unnecessary here: SELECT is defined as:
Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not i1
then the high bits must conform to getBooleanContents.
So here we remove this use of getSetCCResultType and update
getSetCCResultType's documentation to reflect its actual uses.
Patch by deadal nix!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219141 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r218944, which reverted r218714, plus a bug fix.
Description of the bug in r218714 (by Nick)
The original patch forgot to check if the Scale in VariableGEPIndex flipped the
sign of the variable. The BasicAA pass iterates over the instructions in the
order they appear in the function, and so BasicAliasAnalysis::aliasGEP is
called with the variable it first comes across as parameter GEP1. Adding a
%reorder label puts the definition of %a after %b so aliasGEP is called with %b
as the first parameter and %a as the second. aliasGEP later calculates that %a
== %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first
parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) -
ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly
conclude that %a > %b.
Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug.
Slightly modified by me to add an early exit from the loop and avoid
unnecessary, but expensive, function calls.
Original commit message:
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219135 91177308-0d34-0410-b5e6-96231b3b80d8
Codeview line tables for functions in different sections refer to a common
STRING_TABLE_SUBSECTION for filenames.
This happens when building with -Gy or with inline functions with MSVC.
Original patch by Jeff Muizelaar!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219125 91177308-0d34-0410-b5e6-96231b3b80d8
We used to return PartialAlias if *either* variable being queried interacted
with arguments or globals. AFAICT, we can change this to only returning
MayAlias iff *both* variables being queried interacted with arguments or
globals.
Also, adding some basic functionality tests: some basic IPA tests, checking
that we give conservative responses with arguments/globals thrown in the mix,
and ensuring that we trace values through stores and loads.
Note that saying that 'x' interacted with arguments or globals means that the
Attributes of the StratifiedSet that 'x' belongs to has any bits set.
Patch by George Burgess IV, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219122 91177308-0d34-0410-b5e6-96231b3b80d8
output of the llvm-dwarfdump and llvm-objdump report the endianness
used when the object files were generated.
Patch by Charlie Turner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219110 91177308-0d34-0410-b5e6-96231b3b80d8
Particularly, it addresses cases where Reassociate breaks Subtracts but then fails to optimize combinations like I1 + -I2 where I1 and I2 have the same rank and are identical.
Patch by Dmitri Shtilman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219092 91177308-0d34-0410-b5e6-96231b3b80d8
This trades a (register-renamer-friendly) movaps for a floating point
/ integer domain cross. That is a very bad trade, even on architectures
where domain crossing is relatively fast. On any chip where there is
even a cycle stall, this is a Very Bad Idea. It doesn't even seem likely
to cause a spill to be introduced because the reason for the copy is to
destructively shuffle in place.
Thanks to Ben Kramer for fixing a bug in this code that my new shuffle
lowering exposed and highlighting that perhaps it should just go away.
=]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219090 91177308-0d34-0410-b5e6-96231b3b80d8
that are unused.
This allows the combiner to delete math feeding shuffles where the math
isn't actually necessary. This improves some of the vperm2x128 tests
that regressed when the vector shuffle lowering started actually
generating vperm instructions rather than forcibly decomposing them.
Sadly, this isn't enough to get this *really* right because we still
form a completely unnecessary permutation. To fix that, we also need to
fold shuffles which just rearrange concatenated or inserted subvectors.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219086 91177308-0d34-0410-b5e6-96231b3b80d8
It's debatable whether this transform is useful at all, but for now make sure
we don't generate invalid asm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219084 91177308-0d34-0410-b5e6-96231b3b80d8
new vector shuffle lowering.
This is loosely based on a patch by Marius Wachtler to the PR (thanks!).
I refactored it a bi to use std::count_if and a mutable array ref but
the core idea was exactly right. I also added some direct testing of
this case.
I believe PR21137 is now the only remaining regression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219081 91177308-0d34-0410-b5e6-96231b3b80d8
shuffles using AVX and AVX2 instructions. This fixes PR21138, one of the
few remaining regressions impacting benchmarks from the new vector
shuffle lowering.
You may note that it "regresses" many of the vperm2x128 test cases --
these were actually "improved" by the naive lowering that the new
shuffle lowering previously did. This regression gave me fits. I had
this patch ready-to-go about an hour after flipping the switch but
wasn't sure how to have the best of both worlds here and thought the
correct solution might be a completely different approach to lowering
these vector shuffles.
I'm now convinced this is the correct lowering and the missed
optimizations shown in vperm2x128 are actually due to missing
target-independent DAG combines. I've even written most of the needed
DAG combine and will submit it shortly, but this part is ready and
should help some real-world benchmarks out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219079 91177308-0d34-0410-b5e6-96231b3b80d8
For any @llvm.assume intrinsic, if there is another which dominates it and uses
the same condition, then it is redundant and can be removed. While this does
not alter the semantics of the @llvm.assume intrinsics, it makes subsequent
handling more efficient (and the resulting IR easier to read).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219067 91177308-0d34-0410-b5e6-96231b3b80d8
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219046 91177308-0d34-0410-b5e6-96231b3b80d8