Summary:
(1) Function descriptor on AIX
On AIX, a called routine may have 2 distinct symbols associated with it:
* A function descriptor (Name)
* A function entry point (.Name)
The descriptor structure on AIX is the same as those in the ELF V1 ABI:
* The address of the entry point of the function.
* The TOC base address for the function.
* The environment pointer.
The descriptor symbol uses the same name as the source level function in C.
The function entry point is analogous to the symbol we would generate for a
function in a non-descriptor-based ABI, except that it is renamed by
prepending a ".".
Which symbol gets referenced depends on the context:
* Taking the address of the function references the descriptor symbol.
* Calling the function references the entry point symbol.
(2) Speaking of implementation on AIX, for direct function call target, we
create proper MCSymbol SDNode(e.g . ".foo") while constructing SDAG to
replace original TargetGlobalAddress SDNode. Then down the path, we can
take advantage of this MCSymbol.
Patch by: Xiangling_L
Reviewed by: sfertile, hubert.reinterpretcast, jasonliu, syzaara
Differential Revision: https://reviews.llvm.org/D62532
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362735 91177308-0d34-0410-b5e6-96231b3b80d8
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362128 91177308-0d34-0410-b5e6-96231b3b80d8
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362012 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If fneg lowering for fsub -0.0, x fails we currently fall back to treating it as an fsub. This has different behavior for nans than the xor with sign bit trick we normally try to do. On X86, the xor trick for double fails fast-isel in 32-bit mode with sse2 due to 64 bit integer types not being available. With -O2 we would always use an xorpd for this case. If we use subsd, this creates an observable behavior difference between -O0 and -O2. So fall back to SelectionDAG if we can't fast-isel it, that way SelectionDAG will use the xorpd.
I believe this patch is restoring the behavior prior to r345295 from last October. This was missed then because our fast isel case in 32-bit mode aborted fast-isel earlier for another reason. But I've added new tests to cover that.
Reviewers: andrew.w.kaylor, cameron.mcinally, spatel, efriedma
Reviewed By: cameron.mcinally
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61622
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360111 91177308-0d34-0410-b5e6-96231b3b80d8
We're trying to calculate the kill flag for OpReg which is the input so we need to pass the input here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360097 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61083
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@359149 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: hans, rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60800
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358783 91177308-0d34-0410-b5e6-96231b3b80d8
It should be emitted when any floating-point operations (including
calls) are present in the object, not just when calls to printf/scanf
with floating point args are made.
The difference caused by this is very subtle: in static (/MT) builds,
on x86-32, in a program that uses floating point but doesn't print it,
the default x87 rounding mode may not be set properly upon
initialization.
This commit also removes the walk of the types pointed to by pointer
arguments in calls. (To assist in opaque pointer types migration --
eventually the pointee type won't be available.)
That latter implies that it will no longer consider a call like
`scanf("%f", &floatvar)` as sufficient to emit _fltused on its
own. And without _fltused, `scanf("%f")` will abort with error R6002. This
new behavior is unlikely to bite anyone in practice (you'd have to
read a float, and do nothing with it!), and also, is consistent with
MSVC.
Differential Revision: https://reviews.llvm.org/D56548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@352076 91177308-0d34-0410-b5e6-96231b3b80d8
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
We keep a few iterators into the basic block we're selecting while
performing FastISel. Usually this is fine, but occasionally code wants
to remove already-emitted instructions. When this happens we have to be
careful to update those iterators so they're not pointint at dangling
memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@349365 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the llvm-side support for post-inlining evaluation of the
__builtin_constant_p GCC intrinsic.
Also fixed SCCPSolver::visitCallSite to not blow up when seeing a call
to a function where canConstantFoldTo returns true, and one of the
arguments is a struct.
Updated from patch initially by Janusz Sobczak.
Differential Revision: https://reviews.llvm.org/D4276
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@346322 91177308-0d34-0410-b5e6-96231b3b80d8
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@344502 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@340701 91177308-0d34-0410-b5e6-96231b3b80d8
This seems like a pretty glaring omission, and AMDGPU
wants to treat kernels differently from other calling
conventions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@338194 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch introduce new intrinsic -
strip.invariant.group that was described in the
RFC: Devirtualization v2
Reviewers: rsmith, hfinkel, nlopes, sanjoy, amharc, kuhar
Subscribers: arsenm, nhaehnle, JDevlieghere, hiraditya, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47103
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@336073 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In some cases, these operands lacked the IsDebug property, which is meant to signal that
they should not affect codegen. This patch adds a check for this property in the
MachineVerifier and adds it where it was missing.
This includes refactorings to use MachineInstrBuilder construction functions instead of
manually setting up the intrinsic everywhere.
Patch by: JesperAntonsson
Reviewers: aprantl, rnk, echristo, javed.absar
Reviewed By: aprantl
Subscribers: qcolombet, sdardis, nemanjai, JDevlieghere, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D48319
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@335214 91177308-0d34-0410-b5e6-96231b3b80d8
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@332240 91177308-0d34-0410-b5e6-96231b3b80d8
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@331272 91177308-0d34-0410-b5e6-96231b3b80d8
Now local value sinking only scans and numbers instructions added
between the current flush point and the last flush point. This ensures
that ISel is overall linear in the size of the BB.
Fixes PR37010 and re-enables local value sinking by default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@331087 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add an LLVM intrinsic for type discriminated event logging with XRay.
Similar to the existing intrinsic for custom events, but also accepts
a type tag argument to allow plugins to be aware of different types
and semantically interpret logged events they know about without
choking on those they don't.
Relies on a symbol defined in compiler-rt patch D43668. I may wait
to submit before I can see demo everything working together including
a still to come clang patch.
Reviewers: dberris, pelikan, eizan, rSerge, timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45633
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@330219 91177308-0d34-0410-b5e6-96231b3b80d8
This is causing compilation timeouts on code with long sequences of
local values and calls (i.e. foo(1); foo(2); foo(3); ...). It turns out
that code coverage instrumentation is a great way to create sequences
like this, which how our users ran into the issue in practice.
Intel has a tool that detects these kinds of non-linear compile time
issues, and Andy Kaylor reported it as PR37010.
The current sinking code scans the whole basic block once per local
value sink, which happens before emitting each call. In theory, local
values should only be introduced to be used by instructions between the
current flush point and the last flush point, so we should only need to
scan those instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@329822 91177308-0d34-0410-b5e6-96231b3b80d8
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328806 91177308-0d34-0410-b5e6-96231b3b80d8
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@328395 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Local values are constants, global addresses, and stack addresses that
can't be folded into the instruction that uses them. For example, when
storing the address of a global variable into memory, we need to
materialize that address into a register.
FastISel doesn't want to materialize any given local value more than
once, so it generates all local value materialization code at
EmitStartPt, which always dominates the current insertion point. This
allows it to maintain a map of local value registers, and it knows that
the local value area will always dominate the current insertion point.
The downside is that local value instructions are always emitted without
a source location. This is done to prevent jumpy line tables, but it
means that the local value area will be considered part of the previous
statement. Consider this C code:
call1(); // line 1
++global; // line 2
++global; // line 3
call2(&global, &local); // line 4
Today we end up with assembly and line tables like this:
.loc 1 1
callq call1
leaq global(%rip), %rdi
leaq local(%rsp), %rsi
.loc 1 2
addq $1, global(%rip)
.loc 1 3
addq $1, global(%rip)
.loc 1 4
callq call2
The LEA instructions in the local value area have no source location and
are treated as being on line 1. Stepping through the code in a debugger
and correlating it with the assembly won't make much sense, because
these materializations are only required for line 4.
This is actually problematic for the VS debugger "set next statement"
feature, which effectively assumes that there are no registers live
across statement boundaries. By sinking the local value code into the
statement and fixing up the source location, we can make that feature
work. This was filed as https://bugs.llvm.org/show_bug.cgi?id=35975 and
https://crbug.com/793819.
This change is obviously not enough to make this feature work reliably
in all cases, but I felt that it was worth doing anyway because it
usually generates smaller, more comprehensible -O0 code. I measured a
0.12% regression in code generation time with LLC on the sqlite3
amalgamation, so I think this is worth doing.
There are some special cases worth calling out in the commit message:
1. local values materialized for phis
2. local values used by no-op casts
3. dead local value code
Local values can be materialized for phis, and this does not show up as
a vreg use in MachineRegisterInfo. In this case, if there are no other
uses, this patch sinks the value to the first terminator, EH label, or
the end of the BB if nothing else exists.
Local values may also be used by no-op casts, which adds the register to
the RegFixups table. Without reversing the RegFixups map direction, we
don't have enough information to sink these instructions.
Lastly, if the local value register has no other uses, we can delete it.
This comes up when fastisel tries two instruction selection approaches
and the first materializes the value but fails and the second succeeds
without using the local value.
Reviewers: aprantl, dblaikie, qcolombet, MatzeB, vsk, echristo
Subscribers: dotdash, chandlerc, hans, sdardis, amccarth, javed.absar, zturner, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D43093
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@327581 91177308-0d34-0410-b5e6-96231b3b80d8
This patch reverts r325440 and r325438 because it triggers an
assertion in SelectionDAGBuilder.cpp. Also having debug enabled
may unintentionally affect code-gen. The patch is reverted until
we find a better solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325825 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
https://llvm.org/PR36263 shows that when compiling at -O0 a dbg.value()
instruction (that remains from an original dbg.declare()) is dropped
by FastISel. Since FastISel selects instructions by iterating a basic
block backwards, it drops the dbg.value if one of its operands is not
yet instantiated by a previously selected instruction.
Instead of calling 'lookUpRegForValue()' we can call 'getRegForValue()'
instead that will insert a placeholder for the operand to be filled in
when continuing the instruction selection.
Reviewers: aprantl, dblaikie, probinson
Reviewed By: aprantl
Subscribers: llvm-commits, dstenb, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43386
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@325438 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change expands the amount of registers stashed by the entry and
`__xray_CustomEvent` trampolines.
We've found that since the `__xray_CustomEvent` trampoline calls can show up in
situations where the scratch registers are being used, and since we don't
typically want to affect the code-gen around the disabled
`__xray_customevent(...)` intrinsic calls, that we need to save and restore the
state of even the scratch registers in the handling of these custom events.
Reviewers: pcc, pelikan, dblaikie, eizan, kpw, echristo, chandlerc
Reviewed By: echristo
Subscribers: chandlerc, echristo, hiraditya, davide, dblaikie, llvm-commits
Differential Revision: https://reviews.llvm.org/D40894
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@323940 91177308-0d34-0410-b5e6-96231b3b80d8
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@318490 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317729 91177308-0d34-0410-b5e6-96231b3b80d8
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317647 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
FastISel::hasTrivialKill() was the only user of the "IntPtrTy" version of
Cast::isNoopCast(). According to review comments in D37894 we could instead
use the "DataLayout" version of the method, and thus get rid of the
"IntPtrTy" versions of isNoopCast() completely.
With the above done, the remaining isNoopCast() could then be simplified
a bit more.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D38497
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314969 91177308-0d34-0410-b5e6-96231b3b80d8
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@309426 91177308-0d34-0410-b5e6-96231b3b80d8
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8