Summary:
The PGO counter reading will add cold and inlinehint (hot) attributes
to functions that are very cold or hot. This was using hardcoded
thresholds, instead of the profile summary cutoffs which are used in
other hot/cold detection and are more dynamic and adaptable. Switch
to using the summary-based cold/hot detection.
The hardcoded limits were causing some code that had a medium level of
hotness (per the summary) to be incorrectly marked with a cold
attribute, blocking inlining.
Reviewers: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67673
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372189 91177308-0d34-0410-b5e6-96231b3b80d8
For COFF, a comdat group is really a symbol marked
IMAGE_COMDAT_SELECT_ANY and zero or more other symbols marked
IMAGE_COMDAT_SELECT_ASSOCIATIVE. Typically the associative symbols in
the group are not external and are not referenced by other TUs, they are
things like debug info, C++ dynamic initializers, or other section
registration schemes. The Visual C++ linker reports a duplicate symbol
error for symbols marked IMAGE_COMDAT_SELECT_ASSOCIATIVE even if they
would be discarded after handling the leader symbol.
Fixes coverage-inline.cpp in check-profile after r372020.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372182 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes relocations against __profd_ symbols in discarded sections,
which is PR41380.
In general, instrumentation happens very early, and optimization and
inlining happens afterwards. The counters for a function are calculated
early, and after inlining, counters for an inlined function may be
widely referenced by other functions.
For C++ inline functions of all kinds (linkonce_odr &
available_externally mainly), instr profiling wants to deduplicate these
__profc_ and __profd_ globals. Otherwise the binary would be quite
large.
I made __profd_ and __profc_ comdat in r355044, but I chose to make
__profd_ internal. At the time, I was only dealing with coverage, and in
that case, none of the instrumentation needs to reference __profd_.
However, if you use PGO, then instrumentation passes add calls to
__llvm_profile_instrument_range which reference __profd_ globals. The
solution is to make these globals externally visible by using
linkonce_odr linkage for data as was done for counters.
This is safe because PGO adds a CFG hash to the names of the data and
counter globals, so if different TUs have different globals, they will
get different data and counter arrays.
Reviewers: xur, hans
Differential Revision: https://reviews.llvm.org/D67579
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372020 91177308-0d34-0410-b5e6-96231b3b80d8
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371635 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371598 91177308-0d34-0410-b5e6-96231b3b80d8
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371584 91177308-0d34-0410-b5e6-96231b3b80d8
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371484 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@371284 91177308-0d34-0410-b5e6-96231b3b80d8
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@370971 91177308-0d34-0410-b5e6-96231b3b80d8
By default ASan calls a versioned function
`__asan_version_mismatch_check_vXXX` from the ASan module constructor to
check that the compiler ABI version and runtime ABI version are
compatible. This ensures that we get a predictable linker error instead
of hard-to-debug runtime errors.
Sometimes, however, we want to skip this safety guard. This new command
line option allows us to do just that.
rdar://47891956
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D66826
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@370258 91177308-0d34-0410-b5e6-96231b3b80d8
Try harder to emulate "old runtime" in the test.
To get the old behavior with the new runtime library, we need both
disable personality function wrapping and enable landing pad
instrumentation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369977 91177308-0d34-0410-b5e6-96231b3b80d8
One problem with untagging memory in landing pads is that it only works
correctly if the function that catches the exception is instrumented.
If the function is uninstrumented, we have no opportunity to untag the
memory.
To address this, replace landing pad instrumentation with personality function
wrapping. Each function with an instrumented stack has its personality function
replaced with a wrapper provided by the runtime. Functions that did not have
a personality function to begin with also get wrappers if they may be unwound
past. As the unwinder calls personality functions during stack unwinding,
the original personality function is called and the function's stack frame is
untagged by the wrapper if the personality function instructs the unwinder
to keep unwinding. If unwinding stops at a landing pad, the function is
still responsible for untagging its stack frame if it resumes unwinding.
The old landing pad mechanism is preserved for compatibility with old runtimes.
Differential Revision: https://reviews.llvm.org/D66377
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369721 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369013 91177308-0d34-0410-b5e6-96231b3b80d8
Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.
Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.
Based on ideas discussed with @evgeny777 in D56672.
Differential Revision: https://reviews.llvm.org/D65770
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368102 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change gives Emscripten the ability to use more than one constructor
priorities that runs before ASan. By convention, constructor priorites 0-100
are reserved for use by the system. ASan on Emscripten now uses priority 50,
leaving plenty of room for use by Emscripten before and after ASan.
This change is done in response to:
https://github.com/emscripten-core/emscripten/pull/9076#discussion_r310323723
Reviewers: kripken, tlively, aheejin
Reviewed By: tlively
Subscribers: cfe-commits, dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D65684
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@368101 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.
I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.
Reviewers: jdoerfert, spatel, RKSimon, craig.topper
Reviewed By: jdoerfert
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65528
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@367548 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Sometimes we need to swap true-val and false-val of a `SelectInst`.
Having a function for that is nicer than hand-writing it each time.
Reviewers: spatel, RKSimon, craig.topper, jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65520
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@367547 91177308-0d34-0410-b5e6-96231b3b80d8
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@367053 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
(`UnknownObjectFormat`, `Wasm`, and `XCOFF`) are then added.
For `UnknownObjectFormat`, the effect of the action for the `default`
case is maintained; otherwise, where `llvm_unreachable` is called,
`report_fatal_error` is used instead.
Where the `default` case returns a default value, `report_fatal_error`
is used for XCOFF as a placeholder. For `Wasm`, the effect of the action
for the `default` case in maintained.
The code is structured to avoid strongly implying that the `Wasm` case
is present for any reason other than to make the switch cover all
`ObjectFormatType` enumerator values.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: hiraditya, aheejin, sunfish, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64222
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@366544 91177308-0d34-0410-b5e6-96231b3b80d8
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@366379 91177308-0d34-0410-b5e6-96231b3b80d8
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365838 91177308-0d34-0410-b5e6-96231b3b80d8
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365551 91177308-0d34-0410-b5e6-96231b3b80d8
Note: I don't actually plan to implement all of the cases at the moment, I'm just documenting them for completeness. There's a couple of cases left which are practically useful for me in debugging loop transforms, and I'll probably stop there for the moment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365550 91177308-0d34-0410-b5e6-96231b3b80d8
These are sources of poison which don't come from flags, but are clearly documented in the LangRef. Left off support for scalable vectors for the moment, but should be easy to add if anyone is interested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365543 91177308-0d34-0410-b5e6-96231b3b80d8
Implements a transform pass which instruments IR such that poison semantics are made explicit. That is, it provides a (possibly partial) executable semantics for every instruction w.r.t. poison as specified in the LLVM LangRef. There are obvious parallels to the sanitizer tools, but this pass is focused purely on the semantics of LLVM IR, not any particular source language.
The target audience for this tool is developers working on or targetting LLVM from a frontend. The idea is to be able to take arbitrary IR (with the assumption of known inputs), and evaluate it concretely after having made poison semantics explicit to detect cases where either a) the original code executes UB, or b) a transform pass introduces UB which didn't exist in the original program.
At the moment, this is mostly the framework and still needs to be fleshed out. By reusing existing code we have decent coverage, but there's a lot of cases not yet handled. What's here is good enough to handle interesting cases though; for instance, one of the recent LFTR bugs involved UB being triggered by integer induction variables with nsw/nuw flags would be reported by the current code.
(See comment in PoisonChecking.cpp for full explanation and context)
Differential Revision: https://reviews.llvm.org/D64215
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365536 91177308-0d34-0410-b5e6-96231b3b80d8
We had versions of this code scattered around, so consolidate into one location.
Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365259 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Handling callbr is very similar to handling an inline assembly call:
MSan must checks the instruction's inputs.
callbr doesn't (yet) have outputs, so there's nothing to unpoison,
and conservative assembly handling doesn't apply either.
Fixes PR42479.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64072
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365008 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This diff enables address sanitizer on Emscripten.
On Emscripten, real memory starts at the value passed to --global-base.
All memory before this is used as shadow memory, and thus the shadow mapping
function is simply dividing by 8.
Reviewers: tlively, aheejin, sbc100
Reviewed By: sbc100
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63742
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364468 91177308-0d34-0410-b5e6-96231b3b80d8
The VM layout on iOS is not stable between releases. On 64-bit iOS and
its derivatives we use a dynamic shadow offset that enables ASan to
search for a valid location for the shadow heap on process launch rather
than hardcode it.
This commit extends that approach for 32-bit iOS plus derivatives and
their simulators.
rdar://50645192
rdar://51200372
rdar://51767702
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D63586
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364105 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, many profiling tests on Solaris FAIL like
Command Output (stderr):
--
Undefined first referenced
symbol in file
__llvm_profile_register_names_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
__llvm_profile_register_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
Solaris 11.4 ld supports the non-standard GNU ld extension of adding
__start_SECNAME and __stop_SECNAME labels to sections whose names are valid
as C identifiers. Given that we already use Solaris 11.4-only features
like ld -z gnu-version-script-compat and fully working .preinit_array
support in compiler-rt, we don't need to worry about older versions of
Solaris ld.
The patch documents that support (although the comment in
lib/Transforms/Instrumentation/InstrProfiling.cpp
(needsRuntimeRegistrationOfSectionRange) is quite cryptic what it's
actually about), and adapts the affected testcase not to expect the
alternativeq __llvm_profile_register_functions and __llvm_profile_init.
It fixes all affected tests.
Tested on amd64-pc-solaris2.11.
Differential Revision: https://reviews.llvm.org/D41111
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363984 91177308-0d34-0410-b5e6-96231b3b80d8
This saves roughly 32 bytes of instructions per function with stack objects
and causes us to preserve enough information that we can recover the original
tags of all stack variables.
Now that stack tags are deterministic, we no longer need to pass
-hwasan-generate-tags-with-calls during check-hwasan. This also means that
the new stack tag generation mechanism is exercised by check-hwasan.
Differential Revision: https://reviews.llvm.org/D63360
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363636 91177308-0d34-0410-b5e6-96231b3b80d8
The goal is to improve hwasan's error reporting for stack use-after-return by
recording enough information to allow the specific variable that was accessed
to be identified based on the pointer's tag. Currently we record the PC and
lower bits of SP for each stack frame we create (which will eventually be
enough to derive the base tag used by the stack frame) but that's not enough
to determine the specific tag for each variable, which is the stack frame's
base tag XOR a value (the "tag offset") that is unique for each variable in
a function.
In IR, the tag offset is most naturally represented as part of a location
expression on the llvm.dbg.declare instruction. However, the presence of the
tag offset in the variable's actual location expression is likely to confuse
debuggers which won't know about tag offsets, and moreover the tag offset
is not required for a debugger to determine the location of the variable on
the stack, so at the DWARF level it is represented as an attribute so that
it will be ignored by debuggers that don't know about it.
Differential Revision: https://reviews.llvm.org/D63119
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363635 91177308-0d34-0410-b5e6-96231b3b80d8
As shown in PR41279, some basic blocks (such as catchswitch) cannot be
instrumented. This patch filters out these BBs in PGO instrumentation.
It also sets the profile count to the fail-to-instrument edge, so that we
can propagate the counts in the CFG.
Differential Revision: https://reviews.llvm.org/D62700
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362995 91177308-0d34-0410-b5e6-96231b3b80d8