Summary:
LegalizeSetCCCondCode can now legalize SETEQ and SETNE by returning the inverse
condition and requesting that the caller invert the result of the condition.
The caller of LegalizeSetCCCondCode must handle the inverted CC, and they do
so as follows:
SETCC, BR_CC:
Invert the result of the SETCC with SelectionDAG::getNOT()
SELECT_CC:
Swap the true/false operands.
This is necessary for MSA which lacks an integer SETNE instruction.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2229
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195355 91177308-0d34-0410-b5e6-96231b3b80d8
It broke, at least, i686 target. It is reproducible with "llc -mtriple=i686-unknown".
FYI, it didn't appear to add either "-O0" or "-fast-isel".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195339 91177308-0d34-0410-b5e6-96231b3b80d8
Stop folding constant adds into GEP when the type size doesn't match.
Otherwise, the adds' operands are effectively being promoted, changing the
conditions of an overflow. Results are different when:
sext(a) + sext(b) != sext(a + b)
Problem originally found on x86-64, but also fixed issues with ARM and PPC,
which used similar code.
<rdar://problem/15292280>
Patch by Duncan Exon Smith!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194840 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When getConstant() is called for an expanded vector type, it is split into
multiple scalar constants which are then combined using appropriate build_vector
and bitcast operations.
In addition to the usual big/little endian differences, the case where the
element-order of the vector does not have the same endianness as the elements
themselves is also accounted for. For example, for v4i32 on big-endian MIPS,
the byte-order of the vector is <3210,7654,BA98,FEDC>. For little-endian, it is
<0123,4567,89AB,CDEF>.
Handling this case turns out to be a nop since getConstant() returns a splatted
vector (so reversing the element order doesn't change the value)
This fixes a number of cases in MIPS MSA where calling getConstant() during
operation legalization introduces illegal types (e.g. to legalize v2i64 UNDEF
into a v2i64 BUILD_VECTOR of illegal i64 zeros). It should also handle bigger
differences between illegal and legal types such as legalizing v2i64 into v8i16.
lowerMSASplatImm() in the MIPS backend no longer needs to avoid calling
getConstant() so this function has been updated in the same patch.
For the sake of transparency, the steps I've taken since the review are:
* Added 'virtual' to isVectorEltOrderLittleEndian() as requested. This revealed
that the MIPS tests were falsely passing because a polymorphic function was
not actually polymorphic in the reviewed patch.
* Fixed the tests that were now failing. This involved deleting the code to
handle the MIPS MSA element-order (which was previously doing an byte-order
swap instead of an element-order swap). This left
isVectorEltOrderLittleEndian() unused and it was deleted.
* Fixed build failures caused by rebasing beyond r194467-r194472. These build
failures involved the bset, bneg, and bclr instructions added in these commits
using lowerMSASplatImm() in a way that was no longer valid after this patch.
Some of these were fixed by calling SelectionDAG::getConstant() instead,
others were fixed by a new function getBuildVectorSplat() that provided the
removed functionality of lowerMSASplatImm() in a more sensible way.
Reviewers: bkramer
Reviewed By: bkramer
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1973
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194811 91177308-0d34-0410-b5e6-96231b3b80d8
This is to avoid this transformation in some cases:
fold (conv (load x)) -> (load (conv*)x)
On architectures that don't natively support some vector
loads efficiently casting the load to a smaller vector of
larger types and loading is more efficient.
Patch by Micah Villmow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194783 91177308-0d34-0410-b5e6-96231b3b80d8
If a null call target is provided, don't emit a dummy call. This
allows the runtime to reserve as little nop space as it needs without
the requirement of emitting a call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194676 91177308-0d34-0410-b5e6-96231b3b80d8
This patch reapplies r193676 with an additional fix for the Hexagon backend. The
SystemZ backend has already been fixed by r194148.
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194542 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the jump address materialization inside the noop slide. This
enables patching of the materialization itself or its complete removal. This
patch also adds the ability to define scratch registers that can be used safely
by the code called from the patchpoint intrinsic. At least one scratch register
is required, because that one is used for the materialization of the jump
address. This patch depends on D2009.
Differential Revision: http://llvm-reviews.chandlerc.com/D2074
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194306 91177308-0d34-0410-b5e6-96231b3b80d8
The idea of the AnyReg Calling Convention is to provide the call arguments in
registers, but not to force them to be placed in a paticular order into a
specified set of registers. Instead it is up tp the register allocator to assign
any register as it sees fit. The same applies to the return value (if
applicable).
Differential Revision: http://llvm-reviews.chandlerc.com/D2009
Reviewed by Andy
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194293 91177308-0d34-0410-b5e6-96231b3b80d8
MorphNodeTo is not safe to call during DAG building. It eagerly
deletes dependent DAG nodes which invalidates the NodeMap. We could
expose a safe interface for morphing nodes, but I don't think it's
worth it. Just create a new MachineNode and replaceAllUsesWith.
My understaning of the SD design has been that we want to support
early target opcode selection. That isn't very well supported, but
generally works. It seems reasonable to rely on this feature even if
it isn't widely used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194102 91177308-0d34-0410-b5e6-96231b3b80d8
When an extend more than doubles the size of the elements (e.g., a zext
from v16i8 to v16i32), the normal legalization method of splitting the
vectors will run into problems as by the time the destination vector is
legal, the source vector is illegal. The end result is the operation
often becoming scalarized, with the typical horrible performance. For
example, on x86_64, the simple input of:
define void @bar(<16 x i8> %a, <16 x i32>* %p) nounwind {
%tmp = zext <16 x i8> %a to <16 x i32>
store <16 x i32> %tmp, <16 x i32>*%p
ret void
}
Generates:
.section __TEXT,__text,regular,pure_instructions
.section __TEXT,__const
.align 5
LCPI0_0:
.long 255 ## 0xff
.long 255 ## 0xff
.long 255 ## 0xff
.long 255 ## 0xff
.long 255 ## 0xff
.long 255 ## 0xff
.long 255 ## 0xff
.long 255 ## 0xff
.section __TEXT,__text,regular,pure_instructions
.globl _bar
.align 4, 0x90
_bar:
vpunpckhbw %xmm0, %xmm0, %xmm1
vpunpckhwd %xmm0, %xmm1, %xmm2
vpmovzxwd %xmm1, %xmm1
vinsertf128 $1, %xmm2, %ymm1, %ymm1
vmovaps LCPI0_0(%rip), %ymm2
vandps %ymm2, %ymm1, %ymm1
vpmovzxbw %xmm0, %xmm3
vpunpckhwd %xmm0, %xmm3, %xmm3
vpmovzxbd %xmm0, %xmm0
vinsertf128 $1, %xmm3, %ymm0, %ymm0
vandps %ymm2, %ymm0, %ymm0
vmovaps %ymm0, (%rdi)
vmovaps %ymm1, 32(%rdi)
vzeroupper
ret
So instead we can check if there are legal types that enable us to split
more cleverly when the input vector is already legal such that we don't
turn it into an illegal type. If the extend is such that it's more than
doubling the size of the input we check if
- the number of vector elements is even,
- the source type is legal,
- the type of a split source is illegal,
- the type of an extended (by doubling element size) source is legal, and
- the type of that extended source when split is legal.
If the conditions are met, instead of just splitting both the
destination and the source types, we create an extend that only goes up
one "step" (doubling the element width), and the continue legalizing the
rest of the operation normally. The result is that this operates as a
new, more effecient, termination condition for the loop of "split the
operation until the destination type is legal."
With this change, the above example now compiles to:
_bar:
vpxor %xmm1, %xmm1, %xmm1
vpunpcklbw %xmm1, %xmm0, %xmm2
vpunpckhwd %xmm1, %xmm2, %xmm3
vpunpcklwd %xmm1, %xmm2, %xmm2
vinsertf128 $1, %xmm3, %ymm2, %ymm2
vpunpckhbw %xmm1, %xmm0, %xmm0
vpunpckhwd %xmm1, %xmm0, %xmm3
vpunpcklwd %xmm1, %xmm0, %xmm0
vinsertf128 $1, %xmm3, %ymm0, %ymm0
vmovaps %ymm0, 32(%rdi)
vmovaps %ymm2, (%rdi)
vzeroupper
ret
This generalizes a custom lowering that was added a while back to the
ARM backend. That lowering is no longer necessary, and is removed. The
testcases for it, however, provide excellent ARM tests for this change
and so remain.
rdar://14735100
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193727 91177308-0d34-0410-b5e6-96231b3b80d8
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. This mask has
usually the same size as the VSELECT return type (except for Intel KNL). Now the
type legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193676 91177308-0d34-0410-b5e6-96231b3b80d8
Making useAA() default to true for SystemZ showed that the combiner alias
analysis wasn't handling volatile accesses. This hit many of the SystemZ
tests, but I arbitrarily picked one for the purpose of this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193518 91177308-0d34-0410-b5e6-96231b3b80d8
Most SelectionDAG code drops the TBAA info when creating a new form of a
load and store (e.g. during legalization, or when converting a plain
load to an extending one). This patch tries to catch all cases where
the TBAA information can legitimately be carried over.
The patch adds alternative forms of getLoad() and getExtLoad() that take
a MachineMemOperand instead of individual fields. (The corresponding
getTruncStore() already exists.) The idea is to use the MachineMemOperand
forms when all fields are carried over (size, pointer info, isVolatile,
isNonTemporal, alignment and TBAA info). If some adjustment is being
made, e.g. to narrow the load, then we still pass the individual fields
but also pass the TBAA info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193517 91177308-0d34-0410-b5e6-96231b3b80d8
ARM processors without ldrex/strex need to be able to make libcalls for all
atomic operations, including the newer min/max versions.
The alternative would probably be expanding these operations in terms of
cmpxchg (as x86 does always), but in the configurations where this matters
code-size tends to be paramount so the libcall is more desirable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193398 91177308-0d34-0410-b5e6-96231b3b80d8
This optimization is not SSE specific so I am moving it to DAGco.
The new scalar_to_vector dag node exposed a missing pattern in the AArch64 target that I needed to add.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193393 91177308-0d34-0410-b5e6-96231b3b80d8
For some targets, it is useful to be able to look at the original
type of an argument without having to dig through the original IR.
This also fixes a bug in SelectionDAGBuilder where InputArg.PartOffset
was not taking into account the offset of structure elements.
Patch by: Justin Holewinski
Tom Stellard:
- Changed the type of ArgVT to EVT, so it can store non-simple types
like v3i32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193214 91177308-0d34-0410-b5e6-96231b3b80d8
VTList has a long life cycle through the module and getVTList is frequently called. In current getVTList, sequential search over a std::vector is used, this is inefficient in big module.
This patch use FoldingSet to implement hashing mechanism when searching.
Reviewer: Nadav Rotem
Test : Pass unit tests & LNT test suite
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193150 91177308-0d34-0410-b5e6-96231b3b80d8
PR17168 describes a test case that fails when compiling for debug with
fast-isel. Investigation showed that the test was failing because a DBG_VALUE
machine instruction was placed prior to a PHI.
For this problem to occur requires the following:
* Compile for debug
* Compile with fast-isel
* In a block B, fast-isel must partially succeed before punting to DAG-isel
* B must start with a PHI
* The first unhandled node in the DAG must not generate a machine instruction
* A debug value with an order less than that of that first node exists
When all of these circumstances apply, the existing test that an instruction
was not inserted won't fire. Currently it tests whether the block is empty,
or whether the last instruction generated is a phi. When fast-isel has
partially succeeded, the last instruction generated will not be a phi.
Instead, we need to check whether the current insert position is immediately
following a phi. This patch adds that check, and adds the test case from the
PR as a regression test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192976 91177308-0d34-0410-b5e6-96231b3b80d8
There are targets that support i128 sized scalars but cannot emit
instructions that modify them directly. The proper thing to do is to
emit a libcall.
This fixes PR17481.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192957 91177308-0d34-0410-b5e6-96231b3b80d8
When canonicalizing dags according to the rule
(shl (zext (shr X, c1) ), c1) ==> (zext (shl (shr X, c1), c1))
remember to add the new shl dag to the DAGCombiner worklist of nodes.
If we don't explicitly add it to the worklist of nodes to visit, we
may not trigger later on the rule that folds the shift left + logical
shift right into a AND instruction with bitmask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192883 91177308-0d34-0410-b5e6-96231b3b80d8
This happens e.g. with <2 x i64> -1 on x86_32. It cannot be generated directly
because i64 is illegal. It would be nice if getNOT would handle this
transparently, but I don't see a way to generate a legal constant there right
now. Fixes PR17487.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192795 91177308-0d34-0410-b5e6-96231b3b80d8
This is really an extension of the current (shl (shr ...)) -> shl optimization.
The main difference is that certain upper bits must also not be demanded.
The motivating examples are the first two in the testcase, which occur
in llvmpipe output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192783 91177308-0d34-0410-b5e6-96231b3b80d8