10798 Commits

Author SHA1 Message Date
Chandler Carruth
03a77831cc [x86] Enable the new vector shuffle lowering by default.
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.

Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.

When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.

It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.

There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).

Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]

I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219046 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-04 03:52:55 +00:00
Chandler Carruth
1e663cf69c [x86] Fix a bug in the VZEXT DAG combine that I just made more powerful.
It turns out this combine was always somewhat flawed -- there are cases
where nested VZEXT nodes *can't* be combined: if their types have
a mismatch that can be observed in the result. While none of these show
up in currently, once I switch to the new vector shuffle lowering a few
test cases actually form such nested VZEXT nodes. I've not come up with
any IR pattern that I can sensible write to exercise this, but it will
be covered by tests once I flip the switch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219044 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-04 02:51:03 +00:00
Chandler Carruth
cd2c1d8db1 [x86] Sink a generic combine of VZEXT nodes from the lowering to VZEXT
nodes to the DAG combining of them.

This will allow the combine to fire on both old vector shuffle lowering
and the new vector shuffle lowering and generally seems like a cleaner
design. I've trimmed down the code a bit and tried to make it and the
surrounding combine fairly clean while moving it around.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219042 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-04 01:05:48 +00:00
Chandler Carruth
f159de96bd [x86] Add a really preposterous number of patterns for matching all of
the various ways in which blends can be used to do vector element
insertion for lowering with the scalar math instruction forms that
effectively re-blend with the high elements after performing the
operation.

This then allows me to bail on the element insertion lowering path when
we have SSE4.1 and are going to be doing a normal blend, which in turn
restores the last of the blends lost from the new vector shuffle
lowering when I got it to prioritize insertion in other cases (for
example when we don't *have* a blend instruction).

Without the patterns, using blends here would have regressed
sse-scalar-fp-arith.ll *completely* with the new vector shuffle
lowering. For completeness, I've added RUN-lines with the new lowering
here. This is somewhat superfluous as I'm about to flip the default, but
hey, it shows that this actually significantly changed behavior.

The patterns I've added are just ridiculously repetative. Suggestions on
making them better very much welcome. In particular, handling the
commuted form of the v2f64 patterns is somewhat obnoxious.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219033 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 22:43:17 +00:00
Chandler Carruth
91ea3e41ae [x86] Adjust the patterns for lowering X86vzmovl nodes which don't
perform a load to use blendps rather than movss when it is available.

For non-loads, blendps is *much* faster. It can execute on two ports in
Sandy Bridge and Ivy Bridge, and *three* ports on Haswell. This fixes
one of the "regressions" from aggressively taking the "insertion" path
in the new vector shuffle lowering.

This does highlight one problem with blendps -- it isn't commuted as
heavily as it should be. That's future work though.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219022 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 21:38:49 +00:00
Adam Nemet
726942c8bb [ISel] Keep matching state consistent when folding during X86 address match
In the X86 backend, matching an address is initiated by the 'addr' complex
pattern and its friends.  During this process we may reassociate and-of-shift
into shift-of-and (FoldMaskedShiftToScaledMask) to allow folding of the
shift into the scale of the address.

However as demonstrated by the testcase, this can trigger CSE of not only the
shift and the AND which the code is prepared for but also the underlying load
node.  In the testcase this node is sitting in the RecordedNode and MatchScope
data structures of the matcher and becomes a deleted node upon CSE.  Returning
from the complex pattern function, we try to access it again hitting an assert
because the node is no longer a load even though this was checked before.

Now obviously changing the DAG this late is bending the rules but I think it
makes sense somewhat.  Outside of addresses we prefer and-of-shift because it
may lead to smaller immediates (FoldMaskAndShiftToScale is an even better
example because it create a non-canonical node).  We currently don't recognize
addresses during DAGCombiner where arguably this canonicalization should be
performed.  On the other hand, having this in the matcher allows us to cover
all the cases where an address can be used in an instruction.

I've also talked a little bit to Dan Gohman on llvm-dev who added the RAUW for
the new shift node in FoldMaskedShiftToScaledMask.  This RAUW is responsible
for initiating the recursive CSE on users
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-September/076903.html) but it
is not strictly necessary since the shift is hooked into the visited user.  Of
course it's safer to keep the DAG consistent at all times (e.g. for accurate
number of uses, etc.).

So rather than changing the fundamentals, I've decided to continue along the
previous patches and detect the CSE.  This patch installs a very targeted
DAGUpdateListener for the duration of a complex-pattern match and updates the
matching state accordingly.  (Previous patches used HandleSDNode to detect the
CSE but that's not practical here).  The listener is only installed on X86.

I tested that there is no measurable overhead due to this while running
through the spec2k BC files with llc.  The only thing we pay for is the
creation of the listener.  The callback never ever triggers in spec2k since
this is a corner case.

Fixes rdar://problem/18206171

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219009 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 20:00:34 +00:00
Chandler Carruth
dce98e6739 [x86] Teach the new vector shuffle lowering to aggressively form MOVSS
and MOVSD nodes for single element vector inserts.

This is particularly important because a number of patterns in the
backend detect these patterns and leverage them to simplify things. It
also fixes quite a few of the insertion bad code examples. However, it
regresses a specific area: when available, blendps and blendpd are
*dramatically* faster than movss and movsd respectively. But it doesn't
really work to form the blend logic first because the blends *aren't* as
crazy efficient when the data is coming from memory anyways, and thus
will have a movss or movsd regardless. Also, doing that would block
a bunch of the patterns that this is designed to hit.

So my plan is to go into the patterns for lowering MOVSS and MOVSD and
lower them via blends when available. However that's a pretty invasive
restructuring so it will need to be a follow-up patch.

I have already gone into the patterns to lower MOVSS and MOVSD from
memory using MOVLPD, etc. Without that, several of the test cases
I already have regress.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218985 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 13:11:13 +00:00
Chandler Carruth
7ae6f2abf6 [x86] Refactor the element insertion logic in the new vector shuffle
lowering to handle the potential mirroring of 2-element vectors (because
we can't reliably sort them one way) in the caller rather than in the
insertion logic.

This will simplify things considerably as more ways to fail to match the
insertion are added because now we have a nice try and retry point.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218980 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 12:01:55 +00:00
Chandler Carruth
01b3858e66 [x86] Significantly improve the ability of the new vector shuffle
lowering to match VZEXT_MOVL patterns.

I hadn't realized that these had sufficient pattern smarts in the
backend to lower zext-ing from the low element of a vector without it
being a scalar_to_vector node. They do, and this is how to match a bunch
of patterns for movq, movss, etc.

There is a weird propensity to end up using pshufd to place the element
afterward even though it means domain crossing (or rather, to use
xorps+movss to zext the element rather than movq) but that's an
orthogonal problem with VZEXT_MOVL that someone should probably look at.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218977 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 11:25:58 +00:00
Chandler Carruth
53bf81ae59 [x86] Unbreak SSE1 with the new vector shuffle lowering. We can't widen
element types to form illegal vector types.

I've added a special SSE1 test case here that makes sure we don't break
this going forward.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218974 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-03 10:11:39 +00:00
Adam Nemet
6955c9d1ac [AVX512] Pull pattern for subvector insert into the instruction definition
No functional change intended.

Very similar to the change I made for subvector extract in r218480.

test/CodeGen/X86/avx512-insert-extract.ll covers this.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218928 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 23:18:30 +00:00
Adam Nemet
d9e2cc7fa0 [AVX512] Refactor subvector inserts
No functional change.

Very similar to the extract refactoring I did in r218478.

Compared X86.td.expanded before and after.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218927 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 23:18:28 +00:00
Adam Nemet
a9014e5530 [AVX512] Fix i256mem->f256mem typo in VINSERTF64x4rm
Just like in the case of extracts, the refactoring is uncovering some typos in
the code.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218926 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 23:18:26 +00:00
Juergen Ributzka
b3f91b0af7 [Stackmaps] Make ithe frame-pointer required for stackmaps.
Do not eliminate the frame pointer if there is a stackmap or patchpoint in the
function. All stackmap references should be FP relative.

This fixes PR21107.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218920 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 22:21:49 +00:00
Chandler Carruth
bf21d40070 [x86] Teach the new vector shuffle lowering to widen floating point
elements as well as integer elements in order to form simpler shuffle
patterns.

This is the primary reason why we were failing to match some of the
2-and-2 floating point shuffles such as PR21140. Even after fixing this
we need to support some extra patterns in the backend in order to match
the resulting X86ISD::UNPCKL nodes into the correct instructions. This
commit should fix PR21140 and includes more comprehensive testing of
insertion patterns in v4 shuffles.

Not all of the added tests are beautiful. For example, we don't have
clever instructions to insert-via-load in the integer domain. There are
also some places where we aren't sufficiently cunning with our use of
movq and movd, but that's future work.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218911 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-02 21:37:14 +00:00
Chandler Carruth
4bbf21e71e [x86] Improve and correct how the new vector shuffle lowering was
matching and lowering 64-bit insertions.

The first problem was that we weren't looking through bitcasts to
discover that we *could* lower as insertions. Once fixed, we in turn
weren't looking through bitcasts to discover that we could fold a load
into the lowering. Once fixed, we weren't forming a SCALAR_TO_VECTOR
node around the inserted element and instead were passing a scalar to
a DAG node that expected a vector. It turns out there are some patterns
that will "lower" this into the correct asm, but the rest of the X86
backend is very unhappy with such antics.

This should fix a few more edge case regressions I've spotted going
through the regression test suite to enable the new vector shuffle
lowering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218839 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 23:14:28 +00:00
Sanjay Patel
2b918388ab Lower FNEG ( FABS (x) ) -> FNABS (x) [X86 codegen] PR20578
Negative FABS of either a scalar or vector should be handled the same way
on x86 with SSE/AVX: a single OR instruction of the FP operand with a
constant to light up the sign bit(s).

http://llvm.org/bugs/show_bug.cgi?id=20578

Differential Revision: http://reviews.llvm.org/D5201



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218822 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 21:20:06 +00:00
Eric Christopher
2e07dedce3 constify TargetMachine parameter for X86TargetLowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218804 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 20:38:22 +00:00
Sanjay Patel
72447214a6 Don't repeat function/variable name in comment. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218791 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 19:39:32 +00:00
Adrian Prantl
02474a32eb Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
Adrian Prantl
10c4265675 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218782 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:10:54 +00:00
Adrian Prantl
076fd5dfc1 Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 17:55:39 +00:00
Chandler Carruth
7d64681274 [x86] Fix a few more tiny patterns with the new vector shuffle lowering
that keep cropping up in the regression test suite.

This also addresses one of the issues raised on the mailing list with
failing to form 'movsd' in as many cases as we realistically should.
There will be corresponding patches forthcoming for v4f32 at least. This
was a lot of fuss for a relatively small gain, but all the fuss was on
my end trying different ways of holding the pieces of the x86 fragment
patterns *just right*. Now that it works, the code is reasonably simple.

In the new test cases I'm adding here, v2i64 sticks out as just plain
horrible. I've not come up with any great ideas here other than that it
would be nice to recognize when we're *going* to take a domain crossing
hit and cross earlier to get the decent instructions. At least with AVX
it is slightly less silly....

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218756 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 11:14:02 +00:00
Chandler Carruth
a1b88ab2c1 [x86] Delete some extraneous logic from the new vector shuffle lowering.
Nothing was relying on this and there are potentially some edge cases
that it would not be correct under. Removing it seems better than trying
to "fix" it as nothing was relying on it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218755 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 11:13:57 +00:00
Nick Lewycky
b69f873ee1 Fix typo in comment from r218733
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218739 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 03:37:34 +00:00
Chandler Carruth
9e2fe46484 [x86] Teach the new vector shuffle lowering to be even more aggressive
in exposing the scalar value to the broadcast DAG fragment so that we
can catch even reloads and fold them into the broadcast.

This is somewhat magical I'm afraid but seems to work. It is also what
the old lowering did, and I've switched an old test to run both
lowerings demonstrating that we get the same result.

Unlike the old code, I'm not lowering f32 or f64 scalars through this
path when we only have AVX1. The target patterns include pretty heinous
code to re-cast those as shuffles when the scalar happens to not be
spilled because AVX1 provides no broadcast mechanism from registers
what-so-ever. This is terribly brittle. I'd much rather go through our
generic lowering code to get this. If needed, we can add a peephole to
get even more opportunities to broadcast-from-spill-slots that are
exposed post-RA, but my suspicion is this just doesn't matter that much.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218734 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 03:19:43 +00:00
Chandler Carruth
429670f0e8 [x86] Hoist the zext-lowering up in the v4i32 lowering routine -- it is
the same speed as pshufd but we can fold loads into the pmovzx
instructions.

This fixes some regressions that came up in the regression test suite
for the new vector shuffle lowering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218733 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 02:25:54 +00:00
Adam Nemet
d0d5b08fbd [AVX512] Remove space before \t in AsmStrings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218725 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 00:41:32 +00:00
Chandler Carruth
afe75172b1 [x86] Teach the new vector shuffle lowering about VBROADCAST and
VPBROADCAST.

This has the somewhat expected pervasive impact. I don't know why
I forgot about this. Everything seems good with lots of significant
improvements in the tests.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218724 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 00:41:21 +00:00
Robert Khasanov
8acdc5232d [AVX512] Added intrinsics for 128-, 256- and 512-bit versions of VCMPGT{BWDQ}.
Patch by Sergey Lisitsyn <sergey.lisitsyn@intel.com>


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218670 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 12:15:52 +00:00
Robert Khasanov
175ff01f0f [AVX512] Added intrinsics for 128- and 256-bit versions of VCMPEQ{BWDQ}
Fixed lowering of this intrinsics in case when mask is v2i1 and v4i1.
Now cmp intrinsics lower in the following way:
 (i8 (int_x86_avx512_mask_pcmpeq_q_128
             (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
 (i8 (bitcast
   (v8i1 (insert_subvector undef,
           (v2i1 (and (PCMPEQM %a, %b),
                      (extract_subvector
                         (v8i1 (bitcast %mask)), 0))), 0))))


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218669 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 11:41:54 +00:00
Robert Khasanov
cfa5724d50 [AVX512] Added intrinsics for VPCMPEQB and VPCMPEQW.
Added new operand type for intrinsics (IIT_V64)


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218668 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 11:32:22 +00:00
Robert Khasanov
58da66b2bf [AVX512] Enabled intrinsics for VPCMPEQD and VPCMPEQQ.
Added CMP_MASK intrinsic type


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218667 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 11:19:50 +00:00
Chandler Carruth
4abb04a65c [x86] Revert r218588, r218589, and r218600. These patches were pursuing
a flawed direction and causing miscompiles. Read on for details.

Fundamentally, the premise of this patch series was to map
VECTOR_SHUFFLE DAG nodes into VSELECT DAG nodes for all blends because
we are going to *have* to lower to VSELECT nodes for some blends to
trigger the instruction selection patterns of variable blend
instructions. This doesn't actually work out so well.

In order to match performance with the existing VECTOR_SHUFFLE
lowering code, we would need to re-slice the blend in order to fit it
into either the integer or floating point blends available on the ISA.
When coming from VECTOR_SHUFFLE (or other vNi1 style VSELECT sources)
this works well because the X86 backend ensures that these types of
operands to VSELECT get sign extended into '-1' and '0' for true and
false, allowing us to re-slice the bits in whatever granularity without
changing semantics.

However, if the VSELECT condition comes from some other source, for
example code lowering vector comparisons, it will likely only have the
required bit set -- the high bit. We can't blindly slice up this style
of VSELECT. Reid found some code using Halide that triggers this and I'm
hopeful to eventually get a test case, but I don't need it to understand
why this is A Bad Idea.

There is another aspect that makes this approach flawed. When in
VECTOR_SHUFFLE form, we have very distilled information that represents
the *constant* blend mask. Converting back to a VSELECT form actually
can lose this information, and so I think now that it is better to treat
this as VECTOR_SHUFFLE until the very last moment and only use VSELECT
nodes for instruction selection purposes.

My plan is to:
1) Clean up and formalize the target pre-legalization DAG combine that
   converts a VSELECT with a constant condition operand into
   a VECTOR_SHUFFLE.
2) Remove any fancy lowering from VSELECT during *legalization* relying
   entirely on the DAG combine to catch cases where we can match to an
   immediate-controlled blend instruction.

One additional step that I'm not planning on but would be interested in
others' opinions on: we could add an X86ISD::VSELECT or X86ISD::BLENDV
which encodes a fully legalized VSELECT node. Then it would be easy to
write isel patterns only in terms of this to ensure VECTOR_SHUFFLE
legalization only ever forms the fully legalized construct and we can't
cycle between it and VSELECT combining.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218658 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 02:52:28 +00:00
Adam Nemet
e3d2fcce41 [AVX512] Use X86VectorVTInfo in the masking helper classes and the FMAs
No functionality change.

Makes the code more compact (see the FMA part).

This needs a new type attribute MemOpFrag in X86VectorVTInfo.  For now I only
defined this in the simple cases.  See the commment before the attribute.

Diff of X86.td.expanded before and after is empty except for the appearance of
the new attribute.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218637 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 22:54:41 +00:00
Chandler Carruth
8ac2f142a8 [x86] Make the new vector shuffle lowering lower blends as VSELECT
nodes, and rely exclusively on its logic. This removes a ton of
duplication from the blend lowering and centralizes it in one place.

One downside is that it requires a bunch of hacks to make this work with
the current legalization framework. We have to manually speculate one
aspect of legalizing VSELECT nodes to get everything to work nicely
because the existing legalization framework isn't *actually* bottom-up.

The other grossness is that we somewhat duplicate the analysis of
constant blends. I'm on the fence here. If reviewers thing this would
look better with VSELECT when it has constant operands dumping over tho
VECTOR_SHUFFLE, we could go that way. But it would be a substantial
change because currently all of the actual blend instructions are
matched via patterns in the TD files based around VSELECT nodes (despite
them not being perfect fits for that). Suggestions welcome, but at least
this removes the rampant duplication in the backend.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218600 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 09:57:07 +00:00
Chandler Carruth
d23f1883d3 [x86] Delete a bunch of really bad and totally unnecessary code in the
X86 target-specific DAG combining that tried to convert VSELECT nodes
into VECTOR_SHUFFLE nodes that it "knew" would lower into
immediate-controlled blend nodes.

Turns out, we have perfectly good lowering of all these VSELECT nodes,
and indeed that lowering already knows how to handle lowering through
BLENDI to immediate-controlled blend nodes. The code just wasn't getting
used much because this thing forced the world to go through the vector
shuffle lowering. Yuck.

This also exposes that I was too aggressive in avoiding domain crossing
in v218588 with that lowering -- when the other option is to expand into
two 128-bit vectors, it is worth domain crossing. Restore that behavior
now that we have nice tests covering it.

The test updates here fall into two camps. One is where previously we
ended up with an unsigned encoding of the blend operand and now we get
a signed encoding. In most of those places there were elaborate comments
explaining exactly what these operands really mean. Rather than that,
just switch these tests to use the nicely decoded comments that make it
obvious that the final shuffle matches.

The other updates are just removing pointless domain crossing by
blending integers with PBLENDW rather than BLENDPS.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218589 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 02:01:20 +00:00
Chandler Carruth
3589550b3e [x86] Refactor all of the VSELECT-as-blend lowering code to avoid domain
crossing and generally work more like the blend emission code in the new
vector shuffle lowering.

My goal is to have the new vector shuffle lowering just produce VSELECT
nodes that are either matched here to BLENDI or are legal and matched in
the .td files to specific blend instructions. That seems much cleaner as
there are other ways to produce a VSELECT anyways. =]

No *observable* functionality changed yet, mostly because this code
appears to be near-dead. The behavior of this lowering routine did
change though. This code being mostly dead and untestable will change
with my next commit which will also point some new tests at it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218588 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 01:32:54 +00:00
Chandler Carruth
b3cf6a65d6 [x86] Improve naming and comments for VSELECT lowering.
No functionality changed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218586 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 00:51:58 +00:00
Chandler Carruth
8e93ce1780 [x86] Add the dispatch skeleton to the new vector shuffle lowering for
AVX-512.

There is no interesting logic yet. Everything ends up eventually
delegating to the generic code to split the vector and shuffle the
halves. Interestingly, that logic does a significantly better job of
lowering all of these types than the generic vector expansion code does.
Mostly, it lets most of the cases fall back to nice AVX2 code rather
than all the way back to SSE code paths.

Step 2 of basic AVX-512 support in the new vector shuffle lowering. Next
up will be to incrementally add direct support for the basic instruction
set to each type (adding tests first).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218585 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 00:37:27 +00:00
Chandler Carruth
3bc1ba672c [x86] Make the split-and-lower routine fully generic by relaxing the
assertion, making the name generic, and improving the documentation.

Step 1 in adding very primitive support for AVX-512. No functionality
changed yet.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218584 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 00:21:49 +00:00
Chandler Carruth
b61dfec824 [x86] Teach the new vector shuffle lowering to fall back on AVX-512
vectors.

Someone will need to build the AVX512 lowering, which should follow
AVX1 and AVX2 *very* closely for AVX512F and AVX512BW resp. I've added
a dummy test which is a port of the v8f32 and v8i32 tests from AVX and
AVX2 to v8f64 and v8i64 tests for AVX512F and AVX512BW. Hopefully this
is enough information for someone to implement proper lowering here. If
not, I'll be happy to help, but right now the AVX-512 support isn't
a priority for me.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218583 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-28 23:53:10 +00:00
Chandler Carruth
4f4280469c [x86] Fix the new vector shuffle lowering's use of VSELECT for AVX2
lowerings.

This was hopelessly broken. First, the x86 backend wants '-1' to be the
element value representing true in a boolean vector, and second the
operand order for VSELECT is backwards from the actual x86 instructions.
To make matters worse, the backend is just using '-1' as the true value
to get the high bit to be set. It doesn't actually symbolically map the
'-1' to anything. But on x86 this isn't quite how it works: there *only*
the high bit is relevant. As a consequence weird non-'-1' values like
0x80 actually "work" once you flip the operands to be backwards.

Anyways, thanks to Hal for helping me sort out what these *should* be.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218582 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-28 23:23:55 +00:00
Chandler Carruth
3f40848670 [x86] Fix a really silly bug that I introduced fixing another bug in the
new vector shuffle target DAG combines -- it helps to actually test for
the value you want rather than just using an integer in a boolean
context.

Have I mentioned that I loathe implicit conversions recently? :: sigh ::

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218576 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-28 06:11:04 +00:00
Chandler Carruth
21b69296fb [x86] Fix yet another bug in the new vector shuffle lowering's handling
of widening masks.

We can't widen a zeroing mask unless both elements that would be merged
are either zeroed or undef. This is the only way to widen a mask if it
has a zeroed element.

Also clean up the code here by ordering the checks in a more logical way
and by using the symoblic values for undef and zero. I'm actually torn
on using the symbolic values because the existing code is littered with
the assumption that -1 is undef, and moreover that entries '< 0' are the
special entries. While that works with the values given to these
constants, using the symbolic constants actually makes it a bit more
opaque why this is the case.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218575 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-28 03:30:25 +00:00
Chandler Carruth
b66b0cf2eb [x86] Fix yet another issue with widening vector shuffle elements.
I spotted this by inspection when debugging something else, so I have no
test case what-so-ever, and am not even sure it is possible to
realistically trigger the bug. But this is what was intended here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218565 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-27 08:40:33 +00:00
Chandler Carruth
72c3b07dfd [x86] Fix terrible bugs everywhere in the new vector shuffle lowering
and in the target shuffle combining when trying to widen vector
elements.

Previously only one of these was correct, and we didn't correctly
propagate zeroing target shuffle masks (which have a different sentinel
value from undef in non- target shuffle masks now). This isn't just
a missed optimization, this caused us to drop zeroing shuffles on the
floor and miscompile code. The added test case is one example of that.

There are other fixes to the test suite as a consequence of this as well
as restoring the undef elements in some of the masks that were lost when
I brought sanity to the actual *value* of the undef and zero sentinels.

I've also just cleaned up some of the PSHUFD and PSHUFLW and PSHUFHW
combining code, but that code really needs to go. It was a nice initial
attempt, but it isn't very principled and the recursive shuffle combiner
is much more powerful.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218562 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-27 04:42:44 +00:00
Chandler Carruth
8470b5b812 [x86] Flip the sentinel values used in the target shuffle mask decoding
to significantly more sane sentinels. Notably, everywhere else in the
backend's representation of shuffles uses '-1' to represent undef. The
target shuffle masks really shouldn't diverge from that, especially as
in a few places they are manipulated by shared code.

This causes us to lose some undef lanes in various test masks. I want to
get these back, but technically it isn't invalid and there are a *lot*
of bugs here so I want to try to establish a saner baseline for fixing
some of the bugs by aligning the specific senitnel values used.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218561 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-27 04:42:39 +00:00
Chandler Carruth
0a31a52b91 [x86] Fix a moderately terrifying bug in the new 128-bit shuffle logic
that managed to elude all of my fuzz testing historically. =/

Something changed to allow this code path to actually be exercised and
it was doing bad things. It is especially heavily exercised by the
patterns that emerge when doing AVX shuffles that end up lowered through
the 128-bit code path.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218540 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-26 20:41:45 +00:00
Chandler Carruth
a7579ed23f [x86] The mnemonic is SHUFPS not SHUPFS. =[ I'm very bad at spelling
sadly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218524 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-26 17:27:40 +00:00