was causing builder failures.
The bindings were originally added in r251472, and reverted in r251473 due to
the builder failures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251482 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Add a `cleanupendpad` instruction, used to mark exceptional exits out of
cleanups (for languages/targets that can abort a cleanup with another
exception). The `cleanupendpad` instruction is similar to the `catchendpad`
instruction in that it is an EH pad which is the target of unwind edges in
the handler and which itself has an unwind edge to the next EH action.
The `cleanupendpad` instruction, similar to `cleanupret` has a `cleanuppad`
argument indicating which cleanup it exits. The unwind successors of a
`cleanuppad`'s `cleanupendpad`s must agree with each other and with its
`cleanupret`s.
Update WinEHPrepare (and docs/tests) to accomodate `cleanupendpad`.
Reviewers: rnk, andrew.w.kaylor, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@246751 91177308-0d34-0410-b5e6-96231b3b80d8
This change moves LTOCodeGenerator's ownership of the merged module to a
field of type std::unique_ptr<Module>. This helps simplify parts of the code
and clears the way for the module to be consumed by LLVM CodeGen (see D12132
review comments).
Differential Revision: http://reviews.llvm.org/D12205
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245891 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the basic functionality to support "token types".
The motivation stems from the need to perform operations on a Value
whose provenance cannot be obscured.
There are several applications for such a type but my immediate
motivation stems from WinEH. Our personality routine enforces a
single-entry - single-exit regime for cleanups. After several rounds of
optimizations, we may be left with a terminator whose "cleanup-entry
block" is not entirely clear because control flow has merged two
cleanups together. We have experimented with using labels as operands
inside of instructions which are not terminators to indicate where we
came from but found that LLVM does not expect such exotic uses of
BasicBlocks.
Instead, we can use this new type to clearly associate the "entry point"
and "exit point" of our cleanup. This is done by having the cleanuppad
yield a Token and consuming it at the cleanupret.
The token type makes it impossible to obscure or otherwise hide the
Value, making it trivial to track the relationship between the two
points.
What is the burden to the optimizer? Well, it turns out we have already
paid down this cost by accepting that there are certain calls that we
are not permitted to duplicate, optimizations have to watch out for
such instructions anyway. There are additional places in the optimizer
that we will probably have to update but early examination has given me
the impression that this will not be heroic.
Differential Revision: http://reviews.llvm.org/D11861
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245029 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243766 91177308-0d34-0410-b5e6-96231b3b80d8
Bonus change to remove emacs major mode marker from SystemZMachineFunctionInfo.cpp because emacs already knows it's C++ from the extension. Also fix typo "appeary" in AMDGPUMCAsmInfo.h.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@243585 91177308-0d34-0410-b5e6-96231b3b80d8
Revert the changes to the C API LLVMBuildLandingPad that were part of
the personality function move. We now set the personality on the parent
function when the C API attempts to construct a landingpad with a
personality.
This reverts commit r240010.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242372 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The capability was lost with D10429 where the personality function was set at function level rather than landing pad level. Now there is no way to get/set the personality function from the C API. That is a problem.
Note that the whole thing could be avoided by improving the C API testing, as started by D10725
Reviewers: chandlerc, bogner, majnemer, andrew.w.kaylor, rafael, rnk, axw
Subscribers: rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D10946
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242104 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241888 91177308-0d34-0410-b5e6-96231b3b80d8
Originally added in r139314.
Back then it didn't actually get the address, it got whatever value the
relocation used: address or offset.
The values in different object formats are:
* MachO: Always an offset.
* COFF: Always an address, but when talking about the virtual address of
sections it says: "for simplicity, compilers should set this to zero".
* ELF: An offset for .o files and and address for .so files. In the case of the
.so, the relocation in not linked to any section (sh_info is 0). We can't
really compute an offset.
Some API mappings would be:
* Use getAddress for everything. It would be quite cumbersome. To compute the
address elf has to follow sh_info, which can be corrupted and therefore the
method has to return an ErrorOr. The address of the section is also the same
for every relocation in a section, so we shouldn't have to check the error
and fetch the value for every relocation.
* Use a getValue and make it up to the user to know what it is getting.
* Use a getOffset and:
* Assert for dynamic ELF objects. That is a very peculiar case and it is
probably fair to ask any tool that wants to support it to use ELF.h. The
only tool we have that reads those (llvm-readobj) already does that. The
only other use case I can think of is a dynamic linker.
* Check that COFF .obj files have sections with zero virtual address spaces. If
it turns out that some assembler/compiler produces these, we can change
COFFObjectFile::getRelocationOffset to subtract it. Given COFF format,
this can be done without the need for ErrorOr.
The getRelocationAddress method was never implemented for COFF. It also
had exactly one use in a very peculiar case: a shortcut for adding the
section value to a pcrel reloc on MachO.
Given that, I don't expect that there is any use out there of the C API. If
that is not the case, let me know and I will add it back with the implementation
inlined and do a proper deprecation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241450 91177308-0d34-0410-b5e6-96231b3b80d8
This is needed for COFF linkers to distinguish between weak external aliases
and regular symbols with LLVM weak linkage, which are represented as strong
symbols in COFF.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241389 91177308-0d34-0410-b5e6-96231b3b80d8
This change unifies how LTOModule and the backend obtain linker flags
for globals: via a new TargetLoweringObjectFile member function named
emitLinkerFlagsForGlobal. A new function LTOModule::getLinkerOpts() returns
the list of linker flags as a single concatenated string.
This change affects the C libLTO API: the function lto_module_get_*deplibs now
exposes an empty list, and lto_module_get_*linkeropts exposes a single element
which combines the contents of all observed flags. libLTO should never have
tried to parse the linker flags; it is the linker's job to do so. Because
linkers will need to be able to parse flags in regular object files, it
makes little sense for libLTO to have a redundant mechanism for doing so.
The new API is compatible with the old one. It is valid for a user to specify
multiple linker flags in a single pragma directive like this:
#pragma comment(linker, "/defaultlib:foo /defaultlib:bar")
The previous implementation would not have exposed
either flag via lto_module_get_*deplibs (as the test in
TargetLoweringObjectFileCOFF::getDepLibFromLinkerOpt was case sensitive)
and would have exposed "/defaultlib:foo /defaultlib:bar" as a single flag via
lto_module_get_*linkeropts. This may have been a bug in the implementation,
but it does give us a chance to fix the interface.
Differential Revision: http://reviews.llvm.org/D10548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241010 91177308-0d34-0410-b5e6-96231b3b80d8
any tests and I even don't know how to run the tests. This seems like a
minimal change to make them work again, although I can't really verify
at this point. Additionally, it probably makes sense to propagate the
personality parameter removal further.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240010 91177308-0d34-0410-b5e6-96231b3b80d8
constants in commented-out part of LLVMAttribute enum. Add tests that verify
that the safestack attribute is only allowed as a function attribute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239772 91177308-0d34-0410-b5e6-96231b3b80d8
Reverse libLTO's default behaviour for preserving use-list order in
bitcode, and add API for controlling it. The default setting is now
`false` (don't preserve them), which is consistent with `clang`'s
default behaviour.
Users of libLTO should call `lto_codegen_should_embed_uselists(CG,true)`
prior to calling `lto_codegen_write_merged_modules()` whenever the
output file isn't part of the production workflow in order to reproduce
results with subsequent calls to `llc`.
(I haven't added tests since `llvm-lto` (the test tool for LTO) doesn't
support bitcode output, and even if it did: there isn't actually a good
way to test whether a tool has passed the flag. If the order is already
"natural" (if the order will already round-trip) then no use-list
directives are emitted at all. At some point I'll circle back to add
tests to `llvm-as` (etc.) that they actually respect the flag, at which
point I can somehow add a test here as well.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235943 91177308-0d34-0410-b5e6-96231b3b80d8
These look like copy/paste errors, and shouldn't have the "prior to"
qualifier. Each API was introduced at the given values of
`LTO_API_VERSION`. The "prior to" in other doxygen comments is because
I couldn't easily differentiate between versions 1 and 2 when I added
these comments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235925 91177308-0d34-0410-b5e6-96231b3b80d8
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file.
The saved bitcode file is already internalized, so we can call
lto_codegen_set_should_internalize and skip running internalization again.
rdar://20227235
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235211 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both. This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`. It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.
For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`. For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).
The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.
Reviewers: rafael, hfinkel
Reviewed By: hfinkel
Subscribers: nicholas, llvm-commits
Differential Revision: http://reviews.llvm.org/D8650
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235132 91177308-0d34-0410-b5e6-96231b3b80d8
Add the enum "LLVMLinkerMode" back for backwards-compatibility and add the
linker mode parameter back to the "LLVMLinkModules" function. The paramter is
ignored and has no effect.
Patch provided by: Filip Pizlo
Reviewed by: Rafael and Sean
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230988 91177308-0d34-0410-b5e6-96231b3b80d8
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file to
speed up debugging code generation passes and ld64 stuff after code generation.
llvm linking a single bitcode file via lto_codegen_add_module will generate a
different bitcode file from the single input. With the newly-added
lto_codegen_set_module, we can make sure the destination module is the same as
the input.
lto_codegen_set_module will transfer the ownship of the module to code
generator.
rdar://19024554
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230290 91177308-0d34-0410-b5e6-96231b3b80d8
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.
Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).
The motivation for this is a case like:
int __attribute__((const)) foo(int i);
int bar(int x) {
x |= (4 & foo(5));
x |= (8 & foo(3));
x |= (16 & foo(2));
x |= (32 & foo(1));
x |= (64 & foo(0));
x |= (128& foo(4));
return x >> 4;
}
As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).
I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).
I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229462 91177308-0d34-0410-b5e6-96231b3b80d8
lto_codegen_compile_optimized. Also add lto_api_version.
Before this commit, we can only dump the optimized bitcode after running
lto_codegen_compile, but it includes some impacts of running codegen passes,
one example is StackProtector pass. We will get assertion failure when running
llc on the optimized bitcode, because StackProtector is effectively run twice.
After splitting lto_codegen_compile, the linker can choose to dump the bitcode
before running lto_codegen_compile_optimized.
lto_api_version is added so ld64 can check for runtime-availability of the new
API.
rdar://19565500
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228000 91177308-0d34-0410-b5e6-96231b3b80d8
Split `Metadata` away from the `Value` class hierarchy, as part of
PR21532. Assembly and bitcode changes are in the wings, but this is the
bulk of the change for the IR C++ API.
I have a follow-up patch prepared for `clang`. If this breaks other
sub-projects, I apologize in advance :(. Help me compile it on Darwin
I'll try to fix it. FWIW, the errors should be easy to fix, so it may
be simpler to just fix it yourself.
This breaks the build for all metadata-related code that's out-of-tree.
Rest assured the transition is mechanical and the compiler should catch
almost all of the problems.
Here's a quick guide for updating your code:
- `Metadata` is the root of a class hierarchy with three main classes:
`MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from
the `Value` class hierarchy. It is typeless -- i.e., instances do
*not* have a `Type`.
- `MDNode`'s operands are all `Metadata *` (instead of `Value *`).
- `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be
replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively.
If you're referring solely to resolved `MDNode`s -- post graph
construction -- just use `MDNode*`.
- `MDNode` (and the rest of `Metadata`) have only limited support for
`replaceAllUsesWith()`.
As long as an `MDNode` is pointing at a forward declaration -- the
result of `MDNode::getTemporary()` -- it maintains a side map of its
uses and can RAUW itself. Once the forward declarations are fully
resolved RAUW support is dropped on the ground. This means that
uniquing collisions on changing operands cause nodes to become
"distinct". (This already happened fairly commonly, whenever an
operand went to null.)
If you're constructing complex (non self-reference) `MDNode` cycles,
you need to call `MDNode::resolveCycles()` on each node (or on a
top-level node that somehow references all of the nodes). Also,
don't do that. Metadata cycles (and the RAUW machinery needed to
construct them) are expensive.
- An `MDNode` can only refer to a `Constant` through a bridge called
`ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`).
As a side effect, accessing an operand of an `MDNode` that is known
to be, e.g., `ConstantInt`, takes three steps: first, cast from
`Metadata` to `ConstantAsMetadata`; second, extract the `Constant`;
third, cast down to `ConstantInt`.
The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have
metadata schema owners transition away from using `Constant`s when
the type isn't important (and they don't care about referring to
`GlobalValue`s).
In the meantime, I've added transitional API to the `mdconst`
namespace that matches semantics with the old code, in order to
avoid adding the error-prone three-step equivalent to every call
site. If your old code was:
MDNode *N = foo();
bar(isa <ConstantInt>(N->getOperand(0)));
baz(cast <ConstantInt>(N->getOperand(1)));
bak(cast_or_null <ConstantInt>(N->getOperand(2)));
bat(dyn_cast <ConstantInt>(N->getOperand(3)));
bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4)));
you can trivially match its semantics with:
MDNode *N = foo();
bar(mdconst::hasa <ConstantInt>(N->getOperand(0)));
baz(mdconst::extract <ConstantInt>(N->getOperand(1)));
bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2)));
bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3)));
bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4)));
and when you transition your metadata schema to `MDInt`:
MDNode *N = foo();
bar(isa <MDInt>(N->getOperand(0)));
baz(cast <MDInt>(N->getOperand(1)));
bak(cast_or_null <MDInt>(N->getOperand(2)));
bat(dyn_cast <MDInt>(N->getOperand(3)));
bay(dyn_cast_or_null<MDInt>(N->getOperand(4)));
- A `CallInst` -- specifically, intrinsic instructions -- can refer to
metadata through a bridge called `MetadataAsValue`. This is a
subclass of `Value` where `getType()->isMetadataTy()`.
`MetadataAsValue` is the *only* class that can legally refer to a
`LocalAsMetadata`, which is a bridged form of non-`Constant` values
like `Argument` and `Instruction`. It can also refer to any other
`Metadata` subclass.
(I'll break all your testcases in a follow-up commit, when I propagate
this change to assembly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223802 91177308-0d34-0410-b5e6-96231b3b80d8
Add API for specifying which `LLVMContext` each `lto_module_t` and
`lto_code_gen_t` is in.
In particular, this enables the following flow:
for (auto &File : Files) {
lto_module_t M = lto_module_create_in_local_context(File...);
querySymbols(M);
lto_module_dispose(M);
}
lto_code_gen_t CG = lto_codegen_create_in_local_context();
for (auto &File : FilesToLink) {
lto_module_t M = lto_module_create_in_codegen_context(File..., CG);
lto_codegen_add_module(CG, M);
lto_module_dispose(M);
}
lto_codegen_compile(CG);
lto_codegen_write_merged_modules(CG, ...);
lto_codegen_dispose(CG);
This flow has a few benefits.
- Only one module (two if you count the combined module in the code
generator) is in memory at a time.
- Metadata (and constants) from files that are parsed to query symbols
but not linked into the code generator don't pollute the global
context.
- The first for loop can be parallelized, since each module is in its
own context.
- When the code generator is disposed, the memory from LTO gets freed.
rdar://problem/18767512
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221733 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217344 91177308-0d34-0410-b5e6-96231b3b80d8
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reinstates commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215154 91177308-0d34-0410-b5e6-96231b3b80d8