Previously the InstCombiner class contained a pointer to an IR builder that had been passed to the constructor. Sometimes this would be passed to helper functions as either a pointer or the pointer would be dereferenced to be passed by reference.
This patch makes it a reference everywhere including the InstCombiner class itself so there is more inconsistency. This a large, but mechanical patch. I've done very minimal formatting changes on it despite what clang-format wanted to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307451 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As discussed on the mailing list it is legal to propagate TBAA to loads/stores
from/to smaller regions of a larger load tagged with TBAA. Do so for
(load->extractvalue)=>(gep->load) and similar foldings.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D31954
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306615 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Some optimizations in AddReachableCodeToWorklist did not update
the MadeIRChange state. This could happen both when removing
trivially dead instructions (DCE) and at constant folds.
It is essential that changes to the IR is reported correctly,
since for example InstCombinePass::run() will indicate that all
analyses are preserved otherwise.
And the CGPassManager determines if the CallGraph is up-to-date
based on status from InstructionCombiningPass::runOnFunction().
The new test case early_dce_clobbers_callgraph.ll is a reproducer
for some asserts that started to trigger after changes in the
inliner in r305245. With this patch the test case passes again.
Reviewers: sanjoy, craig.topper, dblaikie
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34346
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305725 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When we fold vector constants that are operands of phi's that feed into select,
we need to set the correct insertion point for the *new* selects that get generated.
The correct insertion point is the incoming block for the phi.
Such cases can occur with patch r298845, which fixed folding of
vector constants, but the new selects could be inserted incorrectly (as the added
test case shows).
Reviewers: majnemer, spatel, sanjoy
Reviewed by: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34162
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305591 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This matches the behavior we already had for compares and makes us consistent everywhere.
Reviewers: dberlin, hfinkel, spatel
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33604
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@305049 91177308-0d34-0410-b5e6-96231b3b80d8
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@304787 91177308-0d34-0410-b5e6-96231b3b80d8
There should be a slight efficiency improvement from handling icmp/fcmp with one matcher and reducing duplicated code.
The larger motivation is that there are questions about how predicate canonicalization is handled, and the refactoring
should make it easier if we want to change any of that behavior.
1. As noted in the code comment, we've chosen 3 of the 16 FCMP preds as not canonical. Why those 3? It goes back to
rL32751 from what I can tell, but I'm not sure if there's a justification for that rule.
2. We currently do not canonicalize integer select conditions. Should we use the same rule that applies to branches
for selects?
3. We currently do canonicalize some FP select conditions, and those rules would conflict with the rule shown here.
Should one or both be changed?
No-functional-change-intended, but adding tests anyway because there's no coverage for most of the predicates.
Differential Revision: https://reviews.llvm.org/D33247
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@303261 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
If the Worklist build causes an IR change this change flag currently factors into the flag for running another iteration of the iteration loop. But only changes during processing should trigger another loop.
This patch captures the worklist creation change flag into the outside the loop flag currently used for DbgDeclares and only sends that flag up to the caller. Rerunning the loop only depends on IC.run() now.
This uses the debug output of InstCombine to determine if one or two iterations run. I couldn't think of a better way to detect it since the second spurious iteration shoudn't make any visible changes. Just wasted computation.
I can do a pre-commit of the test case with the CHECK-NOT as a CHECK if this is an ok way to check this.
This is a subset of D31678 as I'm still not sure how to verify the analysis behavior for that.
Reviewers: davide, majnemer, spatel, chandlerc
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32453
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302982 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@302925 91177308-0d34-0410-b5e6-96231b3b80d8
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301432 91177308-0d34-0410-b5e6-96231b3b80d8
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301429 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.
Reviewers: dblaikie, davide
Reviewed By: davide
Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D32266
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301424 91177308-0d34-0410-b5e6-96231b3b80d8
The code I've removed here exists in ExpandBinOp in InstSimplify which we call into before SimplifyUsingDistributiveLaws. The code in InstSimplify looks to have been copied from here.
I verified this code doesn't fire on any lit tests. Not that that proves its definitely dead.
Differential Revision: https://reviews.llvm.org/D32472
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@301341 91177308-0d34-0410-b5e6-96231b3b80d8
This is preparation for a clang change to improve the [[nodiscard]] warning to not be ignored on methods that return a class marked [[nodiscard]] that are defined in the class itself. See D32207.
We should consider adding wrapper methods to APInt that return the overflow flag directly and discard the APInt result. This would eliminate the void casts and the need to create a bool before the call to pass to the out param.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300758 91177308-0d34-0410-b5e6-96231b3b80d8
We currently only support folding a subtract into a select but not a PHI. This fixes that.
I had to fix an assumption in FoldOpIntoPhi that assumed the PHI node was always in operand 0. Now we pass it in like we do for FoldOpIntoSelect. But we still require some dancing to find the Constant when we create the BinOp or ConstantExpr. This is based code is similar to what we do for selects.
Since I touched all call sites, this also renames FoldOpIntoPhi to foldOpIntoPhi to match coding standards.
Differential Revision: https://reviews.llvm.org/D31686
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300363 91177308-0d34-0410-b5e6-96231b3b80d8
Currently this code always makes 2 or 3 calls to tryFactorization regardless of whether the LHS/RHS are BinaryOperators. We make 3 calls when both operands are BinaryOperators with the same opcode. Or surprisingly, when neither are BinaryOperators. This is because getBinOpsForFactorization returns Instruction::BinaryOpsEnd when the operand is not a BinaryOperator. If both LHS and RHS are not BinaryOperators then they both have an Opcode of Instruction::BinaryOpsEnd. When this happens we rely on tryFactorization to early out due to A/B/C/D being null. Similar behavior occurs for the other calls, we rely on getBinOpsForFactorization having made A/B or C/D null to get tryFactorization to early out.
We also rely on these null checks to check the result of getIdentityValue and early out for it.
This patches refactors this to pull these checks up to SimplifyUsingDistributiveLaws so we don't rely on BinaryOpsEnd as a sentinel or this A/B/C/D null behavior. I think this makes this code easier to reason about. Should also give a tiny performance improvement for cases where the LHS or RHS isn't a BinaryOperator.
Differential Revision: https://reviews.llvm.org/D31913
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300353 91177308-0d34-0410-b5e6-96231b3b80d8
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300032 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a TODO in getIdentityValue and may allow some transforms to occur earlier. But I was unable to find any transforms we didn't already handle.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299966 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: I noticed in the select folding code that we copied fast math flags, but did not do the same for the similar handling in phi nodes. This patch fixes that to do the same thing as select
Reviewers: spatel, davide, majnemer, hfinkel
Reviewed By: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31690
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299838 91177308-0d34-0410-b5e6-96231b3b80d8
This way we ensure we immediately revisit the instruction and do any additional optimizations before visiting the users. Otherwise we might visit the users, then the instruction, then users again, then instruction again.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299267 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the GEP combines (e.g., descaling) can't handle vector GEPs. We have an
existing check that attempts to bail out if given a vector GEP. However, the
check only tests the GEP's pointer operand. A GEP results in a vector of
pointers if at least one of its operands is vector-typed (e.g., its pointer
operand could be a scalar, but its index could be a vector). We should just
check the type of the GEP itself. This should fix PR32414.
Reference: https://bugs.llvm.org/show_bug.cgi?id=32414
Differential Revision: https://reviews.llvm.org/D31470
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299017 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We are incorrectly folding selects into phi nodes when the incoming value of a phi
node is a constant vector. This optimization is done in `FoldOpIntoPhi` when the
select condition is a phi node with constant incoming values.
Without the fix, we are miscompiling (i.e. incorrectly folding the
select into the phi node) when the vector contains non-zero
elements.
This patch fixes the miscompile and we will correctly fold based on the
select vector operand (see added test cases).
Reviewers: majnemer, sanjoy, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31189
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298845 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombine tries to constant fold instruction operands during worklist building, but we don't print that we're doing this.
We also set a change flag here that causes us to rebuild and rerun the worklist one more time even if processing the worklist itself created no additional changes. So in the log I saw two inst combine runs that visited all instructions without printing that anything was changed. I may be submitting another patch to remove the change flag unless I can find some reason why we should be doing that.
Differential Revision: https://reviews.llvm.org/D31091
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298264 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is based on the llvm-dev discussion here:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/109631.html
Folding to i1 should always be desirable because that's better for value tracking
and we have special folds for i1 types.
I checked for other users of shouldChangeType() where this might have an effect,
but we already handle the i1 case differently than other types in all of those cases.
Side note: the default datalayout includes i1, so it seems we only find this gap in
shouldChangeType + phi folding for the case when there is (1) an explicit datalayout
without i1, (2) casting to i1 from a legal type, and (3) a phi with exactly 2 incoming
casted operands (as Björn mentioned).
Differential Revision: https://reviews.llvm.org/D29336
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294066 91177308-0d34-0410-b5e6-96231b3b80d8
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292054 91177308-0d34-0410-b5e6-96231b3b80d8
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292039 91177308-0d34-0410-b5e6-96231b3b80d8
cover domtree and alias analysis. These are the pretty clear analyses
that we would always want to survive this pass.
To make these survive, we also need to preserve the assumption cache.
Added a test that verifies the important bits of this preservation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@292037 91177308-0d34-0410-b5e6-96231b3b80d8
Some of the callers are artificially limiting this transform to integer types;
this should make it easier to incrementally remove that restriction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@291620 91177308-0d34-0410-b5e6-96231b3b80d8
We're currently doing nearly the same thing for @llvm.objectsize in
three different places: two of them are missing checks for overflow,
and one of them could subtly break if InstCombine gets much smarter
about removing alloc sites. Seems like a good idea to not do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290214 91177308-0d34-0410-b5e6-96231b3b80d8