available in normal llvm operators. We aren't going to
use those for MMX any more because it's unsafe for the
optimizers to synthesize new MMX instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112685 91177308-0d34-0410-b5e6-96231b3b80d8
and output the dwarf line number tables. This takes the current loc info after
an instruction is assembled and saves the needed info into an object that has
vector and for each section. These objects will be used for the final patch to
build and emit the encoded dwarf line number tables. Again for now this is only
in the Mach-O streamer but at some point will move to a more generic place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112668 91177308-0d34-0410-b5e6-96231b3b80d8
any more. I plan to reimplement alloca promotion using SSAUpdater later.
It looks like Bill's URoR logic really always needs domtree, so the pass
now always asks for domtree info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112597 91177308-0d34-0410-b5e6-96231b3b80d8
that like to randomly define things like "X86", regenerate autoconf bits
and update cmake.
Fixes PR7852.
Patch by Xerxes Rånby!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112499 91177308-0d34-0410-b5e6-96231b3b80d8
assertingvh so we get a violent explosion if the pointer dangles.
2) Fix AliasSetTracker::deleteValue to remove call sites with
by-pointer comparisons instead of by-alias queries. Using
findAliasSetForCallSite can cause alias sets to get merged
when they shouldn't, and can also miss alias sets when the
call is readonly.
#2 fixes PR6889, which only repros with a .c file :(
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112452 91177308-0d34-0410-b5e6-96231b3b80d8
since none of them use it. With this, we now only run
domfrontier (an N^2 analysis) 3 times at clang -O3: once for
"early" per-function cleanup, once at the start of the
per-function pipeline to support SRoA, and once late because
the EHPrepare class uses it.
EHPrepare needs to stop using it, this is silly and wasteful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112420 91177308-0d34-0410-b5e6-96231b3b80d8
IR add/sub operations with one or both operands sign- or zero-extended.
Auto-upgrade the old intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112416 91177308-0d34-0410-b5e6-96231b3b80d8
Update all the tests using those intrinsics and add support for
auto-upgrading bitcode files with the old versions of the intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112271 91177308-0d34-0410-b5e6-96231b3b80d8
fix: add a flag to MapValue and friends which indicates whether
any module-level mappings are being made. In the common case of
inlining, no module-level mappings are needed, so MapValue doesn't
need to examine non-function-local metadata, which can be very
expensive in the case of a large module with really deep metadata
(e.g. a large C++ program compiled with -g).
This flag is a little awkward; perhaps eventually it can be moved
into the ClonedCodeInfo class.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112190 91177308-0d34-0410-b5e6-96231b3b80d8
I think there are good reasons to change this, but in the interests
of short-term stability, make SmallVector<...,0> reserve non-zero
capacity in its constructors. This means that SmallVector<...,0>
uses more memory than SmallVector<...,1> and should really only be
used (unless/until this workaround is removed) by clients that
care about using SmallVector with an incomplete type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112147 91177308-0d34-0410-b5e6-96231b3b80d8
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112101 91177308-0d34-0410-b5e6-96231b3b80d8
needed parsing for the .loc directive and saves the current info from that
into the context. The next patch will take the current loc info after an
instruction is assembled and save that info into a vector for each section for
use to build the line number tables. The patch after that will encode the info
from those vectors into the output file as the dwarf line tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111956 91177308-0d34-0410-b5e6-96231b3b80d8
For now it's still a command line option, but the interface to the generic
code doesn't need to know that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111942 91177308-0d34-0410-b5e6-96231b3b80d8
which does the same thing. This eliminates redundant code and
handles MDNodes better. MDNode linking still doesn't fully
work yet though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111941 91177308-0d34-0410-b5e6-96231b3b80d8
- Cache used characters in a bitset to reduce memory overhead to just 32 bytes.
- On my core2 this code is faster except when the checked string was very short
(smaller than the list of delimiters).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111817 91177308-0d34-0410-b5e6-96231b3b80d8
- Respect find_first_of(char's From parameter instead of silently dropping it.
- Prefer std::string() to std::string("")
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111814 91177308-0d34-0410-b5e6-96231b3b80d8
general idea here is to have a group of x86 target specific nodes which are
going to be selected during lowering and then directly matched in isel.
The commit includes the addition of those specific nodes and a *bunch* of
patterns, and incrementally we're going to switch between them and what we
have right now. Both the patterns and target specific nodes can change as
we move forward with this work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111691 91177308-0d34-0410-b5e6-96231b3b80d8
It's similar to "linker_private_weak", but it's known that the address of the
object is not taken. For instance, functions that had an inline definition, but
the compiler decided not to inline it. Note, unlike linker_private and
linker_private_weak, linker_private_weak_def_auto may have only default
visibility. The symbols are removed by the linker from the final linked image
(executable or dynamic library).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111684 91177308-0d34-0410-b5e6-96231b3b80d8
not part of the IR, are not uniqued, and may be safely RAUW'd.
This replaces a variety of alternate mechanisms for achieving
the same effect.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111681 91177308-0d34-0410-b5e6-96231b3b80d8
functionality that most command-line tools need: ensuring that the
output file gets deleted if the tool is interrupted or encounters an
error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111595 91177308-0d34-0410-b5e6-96231b3b80d8
extending vector load should extend each element in the same way as the
corresponding scalar extending load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111577 91177308-0d34-0410-b5e6-96231b3b80d8
base registers were required. This will allow for slightly better packing
of the locals when alignment padding is necessary after callee saved registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111508 91177308-0d34-0410-b5e6-96231b3b80d8
constructed with an output filename of "-". In particular, allow the
file descriptor to be closed, and close the file descriptor in the
destructor if it hasn't been explicitly closed already, to ensure
that any write errors are detected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111436 91177308-0d34-0410-b5e6-96231b3b80d8
decomposition that it is doing is very basicaa specific and is only used
by basicaa.
Now with less tree breakingness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111433 91177308-0d34-0410-b5e6-96231b3b80d8
We must complete the DFS, otherwise we might miss needed phi-defs, and
prematurely color live ranges with a non-dominating value.
This is not a big deal since we get to color more of the CFG and the next
mapValue call will be faster.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111397 91177308-0d34-0410-b5e6-96231b3b80d8
Nothing fancy, just ask the target if any currently available base reg
is in range for the instruction under consideration and use the first one
that is. Placeholder ARM implementation simply returns false for now.
ongoing saga of rdar://8277890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111374 91177308-0d34-0410-b5e6-96231b3b80d8
the local block. Resolve references to those indices to a new base register.
For simplification and testing purposes, a new virtual base register is
allocated for each frame index being resolved. The result is truly horrible,
but correct, code that's good for exercising the new code paths.
Next up is adding thumb1 support, which should be very simple. Following that
will be adding base register re-use and implementing a reasonable ARM
heuristic for when a virtual base register should be generated at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111315 91177308-0d34-0410-b5e6-96231b3b80d8
whether to allocate a virtual frame base register to resolve the frame
index reference in it. Implement a simple version for ARM to aid debugging.
In LocalStackSlotAllocation, scan the function for frame index references
to local frame indices and ask the target whether to allocate virtual
frame base registers for any it encounters. Purely infrastructural for
debug output. Next step is to actually allocate base registers, then add
intelligent re-use of them.
rdar://8277890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111262 91177308-0d34-0410-b5e6-96231b3b80d8
a Pass abstraction, since that's the level it's actually used at.
Rename Pass' dumpPassStructure to dumpPass.
This eliminates an awkward use of getAsPass() to convert a PMDataManager*
into a Pass* just to permit a dumpPassStructure call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111199 91177308-0d34-0410-b5e6-96231b3b80d8
mapping. Have the local block track its alignment requirement, and then
apply that when the block itself is allocated. Previously, offsets could
get adjusted in PEI to be different, relative to one another, than the
block allocation thought they would be, which defeats the point of doing
the allocation this way. Continuing rdar://8277890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111197 91177308-0d34-0410-b5e6-96231b3b80d8
PMTopLevelManager's constructor take a PMDataManager *, which already
provides the needed abstraction support.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111189 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce a helper method to add a section to the end of a layout. This
will be used by the ELF ObjectWriter code to add the metadata sections
(symbol table, etc) to the end of an object file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111171 91177308-0d34-0410-b5e6-96231b3b80d8
expression being loop invariant is not equivalent to the property of
properly dominating the loop header.
Other optimizations have also made this optimization less important.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111160 91177308-0d34-0410-b5e6-96231b3b80d8
implementations of equality comparison and hash computation. This
can be used to optimize node lookup by avoiding creating lots of
temporary ID values just for hashing and comparison purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111130 91177308-0d34-0410-b5e6-96231b3b80d8
- Eliminate redundant successors.
- Convert an indirectbr with one successor into a direct branch.
Also, generalize SimplifyCFG to be able to be run on a function entry block.
It knows quite a few simplifications which are applicable to the entry
block, and it only needs a few checks to avoid trouble with the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111060 91177308-0d34-0410-b5e6-96231b3b80d8
experimental pass that allocates locals relative to one another before
register allocation and then assigns them to actual stack slots as a block
later in PEI. This will eventually allow targets with limited index offset
range to allocate additional base registers (not just FP and SP) to
more efficiently reference locals, as well as handle situations where
locals cannot be referenced via SP or FP at all (dynamic stack realignment
together with variable sized objects, for example). It's currently
incomplete and almost certainly buggy. Work in progress.
Disabled by default and gated via the -enable-local-stack-alloc command
line option.
rdar://8277890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111059 91177308-0d34-0410-b5e6-96231b3b80d8
since they can support trivial implementations. This avoids potentially
expensive traversals of the operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111031 91177308-0d34-0410-b5e6-96231b3b80d8
target triple and straightens it out. This does less than gcc's script
config.sub, for example it turns i386-mingw32 into i386--mingw32 not
i386-pc-mingw32, but it does a decent job of turning funky triples into
something that the rest of the Triple class can understand. The plan
is to use this to canonicalize triple's when they are first provided
by users, and have the rest of LLVM only deal with canonical triples.
Once this is done the special case workarounds in the Triple constructor
can be removed, making the class more regular and easier to use. The
comments and unittests for the Triple class are already adjusted in this
patch appropriately for this brave new world of increased uniformity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110909 91177308-0d34-0410-b5e6-96231b3b80d8
- remove ashr which never worked.
- fix lshr and shl and add tests.
- remove dead function "intersect1Wrapped".
- add a new sub method to subtract ranges, with test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110861 91177308-0d34-0410-b5e6-96231b3b80d8
that many of these things, so the memory savings isn't significant,
and there are now situations where there can be alignments greater
than 128.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110836 91177308-0d34-0410-b5e6-96231b3b80d8