Note that several of these tests belong in InstSimplify rather than
InstCombine because they return existing operands or constants.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278684 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r278660.
It causes downstream assertion failure in InstCombine on shuffle
instructions. Comes up in __mm_swizzle_epi32.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278672 91177308-0d34-0410-b5e6-96231b3b80d8
The new version has several advantages:
1) IMSHO it's more readable and neater
2) It handles loads and stores properly
3) It can handle any number of incoming blocks rather than just two. I'll be taking advantage of this in a followup patch.
With this change we can now finally sink load-modify-store idioms such as:
if (a)
return *b += 3;
else
return *b += 4;
=>
%z = load i32, i32* %y
%.sink = select i1 %a, i32 5, i32 7
%b = add i32 %z, %.sink
store i32 %b, i32* %y
ret i32 %b
When this works for switches it'll be even more powerful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278660 91177308-0d34-0410-b5e6-96231b3b80d8
If a loop is not rotated (for example when optimizing for size), the latch is not the backedge. If we promote an expression to post-inc form, we not only increase register pressure and add a COPY for that IV expression but for all IVs!
Motivating testcase:
void f(float *a, float *b, float *c, int n) {
while (n-- > 0)
*c++ = *a++ + *b++;
}
It's imperative that the pointer increments be located in the latch block and not the header block; if not, we cannot use post-increment loads and stores and we have to keep both the post-inc and pre-inc values around until the end of the latch which bloats register usage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278658 91177308-0d34-0410-b5e6-96231b3b80d8
IRCE has the ability to further version pre-loops and post-loops that it
created, but this isn't useful at all. This change teaches IRCE to
leave behind some metadata in the loops it creates (by cloning the main
loop) so that these new loops are not re-processed by IRCE.
Today this bug is hidden by another bug -- IRCE does not update LoopInfo
properly so the loop pass manager does not re-invoke IRCE on the loops
it split out. However, once the latter is fixed the bug addressed in
this change causes IRCE to infinite-loop in some cases (e.g. it splits
out a pre-loop, a pre-pre-loop from that, a pre-pre-pre-loop from that
and so on).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278617 91177308-0d34-0410-b5e6-96231b3b80d8
The (negative) test case is supposed to check that IRCE does not muck
with range checks it cannot handle, not that it does the right thing in
the absence of profiling information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278612 91177308-0d34-0410-b5e6-96231b3b80d8
Loops containing `indirectbr` may not be in simplified form, even after
running LoopSimplify. Reject then gracefully, instead of tripping an
assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278611 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Refactor the existing support into a LoopDataPrefetch implementation
class and a LoopDataPrefetchLegacyPass class that invokes it.
Add a new LoopDataPrefetchPass for the new pass manager that utilizes
the LoopDataPrefetch implementation class.
Reviewers: mehdi_amini
Subscribers: sanjoy, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23483
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278591 91177308-0d34-0410-b5e6-96231b3b80d8
`IVVisitor::visitCast` used to have the invariant that if the
instruction it was passed was a sext or zext instruction, the result of
the instruction would be wider than the induction variable. This is no
longer true after rL275037, so this change teaches `IndVarSimplify` s
implementation of `IVVisitor::visitCast` to work with the relaxed
invariant.
A corresponding change to SimplifyIndVar to preserve the said invariant
after rL275037 would also work, but given how `IVVisitor::visitCast` is
spelled (no indication of said invariant), I figured the current fix is
cleaner.
Fixes PR28935.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278584 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrite Visited[Cond] = getValueFromConditionImpl(..., Visited) statement which can lead to a memory corruption since getValueFromConditionImpl changes Visited map and invalidates the iterators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278514 91177308-0d34-0410-b5e6-96231b3b80d8
Take range metadata into account for conditions like this:
%length = load i32, i32* %length_ptr, !range !{i32 0, i32 2147483647}
%cmp = icmp ult i32 %a, %length
This is a common pattern for range checks where the length of the array is dynamically loaded.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D23267
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278496 91177308-0d34-0410-b5e6-96231b3b80d8
Currently LVI can only gather value constraints from comparisons like:
* icmp <pred> Val, ...
* icmp ult (add Val, Offset), ...
In fact we can handle any predicate in latter comparisons.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D23357
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278493 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
1. Make coroutine representation more robust against optimization that may duplicate instruction by introducing coro.id intrinsics that returns a token that will get fed into coro.alloc and coro.begin. Due to coro.id returning a token, it won't get duplicated and can be used as reliable indicator of coroutine identify when a particular coroutine call gets inlined.
2. Move last three arguments of coro.begin into coro.id as they will be shared if coro.begin will get duplicated.
3. doc + test + code updated to support the new intrinsic.
Reviewers: mehdi_amini, majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23412
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278481 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds IsVariadicFunction bit to summary in order
to not import variadic functions. Inliner doesn't inline
variadic functions because it is hard to reason about it.
This one small fix improves Importer by about 16%
(going from 86% to 100% of imported functions that are
inlined anywhere)
on some spec benchmarks like 'int' and others.
Reviewers: eraman, mehdi_amini, tejohnson
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23339
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278432 91177308-0d34-0410-b5e6-96231b3b80d8
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
This commit contains changes in a newly added testcase which was not included in the previous commit (which was reverted later on).
https://reviews.llvm.org/D23075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278421 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is an extension of the fix in r271424. That fix dealt with builder
insert points being moved by SCEV expansion, but only for the lifetime
of the expand call. This change modifies the interface so that LSR can
safely call expand multiple times at the same insert point and do the
right thing if one of the expansions decides to move the original insert
point.
This is a fix for PR28719.
Reviewers: sanjoy
Subscribers: llvm-commits, mcrosier, mzolotukhin
Differential Revision: https://reviews.llvm.org/D23342
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278413 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes PR 28933 by making sure GVNHoist does not try to recreate memory
accesses when it has not actually moved them.
Reviewers: sebpop
Subscribers: llvm-commits, george.burgess.iv
Differential Revision: https://reviews.llvm.org/D23411
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278401 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Keep track of all methods for which we have devirtualized at least
one call and then print them sorted alphabetically. That allows to
avoid duplicates and also makes the order deterministic.
Add optimization names into the remarks, so that it's easier to
understand how has each method been devirtualized.
Fix a bug when wrong methods could have been reported for
tryVirtualConstProp.
Reviewers: kcc, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23297
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278389 91177308-0d34-0410-b5e6-96231b3b80d8
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
https://reviews.llvm.org/D23075
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@278334 91177308-0d34-0410-b5e6-96231b3b80d8