This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365468 91177308-0d34-0410-b5e6-96231b3b80d8
We previously marked all the tests with branch funnels as
`-verify-machineinstrs=0`.
This is an attempt to fix it.
1) `ICALL_BRANCH_FUNNEL` has no defs. Mark it as `let OutOperandList =
(outs)`
2) After that we hit an assert: ``` Assertion failed: (Op.getValueType()
!= MVT::Other && Op.getValueType() != MVT::Glue && "Chain and glue
operands should occur at end of operand list!"), function AddOperand,
file
/Users/francisvm/llvm/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp,
line 461. ```
The chain operand was added at the beginning of the operand list. Move
that to the end.
3) After that we hit another verifier issue in the pseudo expansion
where the registers used in the cmps and jmps are not added to the
livein lists. Add the `EFLAGS` to all the new MBBs that we create.
PR39436
Differential Review: https://reviews.llvm.org/D54155
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365058 91177308-0d34-0410-b5e6-96231b3b80d8
When a target intrinsic has been determined to touch memory, we construct a MachineMemOperand during SDAG construction. In this case, we should propagate AAMDNodes metadata to the MachineMemOperand where available.
Differential revision: https://reviews.llvm.org/D64131
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@365043 91177308-0d34-0410-b5e6-96231b3b80d8
The SDAGBuilder behavior stems from the days when we didn't have fast
math flags available in SDAG. We do now and doing the transformation in
the legalizer has the advantage that it also works for vector types.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364743 91177308-0d34-0410-b5e6-96231b3b80d8
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@364191 91177308-0d34-0410-b5e6-96231b3b80d8
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363757 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes how LLVM handles the accumulator/start value
in the reduction, by never ignoring it regardless of the presence of
fast-math flags on callsites. This change introduces the following
new intrinsics to replace the existing ones:
llvm.experimental.vector.reduce.fadd -> llvm.experimental.vector.reduce.v2.fadd
llvm.experimental.vector.reduce.fmul -> llvm.experimental.vector.reduce.v2.fmul
and adds functionality to auto-upgrade existing LLVM IR and bitcode.
Reviewers: RKSimon, greened, dmgreen, nikic, simoll, aemerson
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D60261
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@363035 91177308-0d34-0410-b5e6-96231b3b80d8
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.
This re-enables it for FastISel with the corresponding fix.
This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.
FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.
This fix moves the replacement of registers before the emission of
copies for the live-ins.
The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).
A few tests are affected by this:
* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed
Differential Revision: https://reviews.llvm.org/D62361
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362963 91177308-0d34-0410-b5e6-96231b3b80d8
In order for GlobalISel to re-use the significant amount of analysis and
optimization code in SDAG's switch lowering, we first have to extract it and
create an interface to be used by both frameworks.
No test changes as it's NFC.
Differential Revision: https://reviews.llvm.org/D62745
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362857 91177308-0d34-0410-b5e6-96231b3b80d8
The ISD::STRICT_ nodes used to implement the constrained floating-point
intrinsics are currently never passed to the target back-end, which makes
it impossible to handle them correctly (e.g. mark instructions are depending
on a floating-point status and control register, or mark instructions as
possibly trapping).
This patch allows the target to use setOperationAction to switch the action
on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code
will stop converting the STRICT nodes to regular floating-point nodes, but
instead pass the STRICT nodes to the target using normal SelectionDAG
matching rules.
To avoid having the back-end duplicate all the floating-point instruction
patterns to handle both strict and non-strict variants, we make the MI
codegen explicitly aware of the floating-point exceptions by introducing
two new concepts:
- A new MCID flag "mayRaiseFPException" that the target should set on any
instruction that possibly can raise FP exception according to the
architecture definition.
- A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI
instruction resulting from expansion of any constrained FP intrinsic.
Any MI instruction that is *both* marked as mayRaiseFPException *and*
FPExcept then needs to be considered as raising exceptions by MI-level
codegen (e.g. scheduling).
Setting those two new flags is straightforward. The mayRaiseFPException
flag is simply set via TableGen by marking all relevant instruction
patterns in the .td files.
The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes
in the SelectionDAG, and gets inherited in the MachineSDNode nodes created
from it during instruction selection. The flag is then transfered to an
MIFlag when creating the MI from the MachineSDNode. This is handled just
like fast-math flags like no-nans are handled today.
This patch includes both common code changes required to implement the
new features, and the SystemZ implementation.
Reviewed By: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D55506
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362663 91177308-0d34-0410-b5e6-96231b3b80d8
Most parts of LLVM don't care whether the byval type is derived from an
explicit Attribute or from the parameter's pointee type, so it makes
sense for the main access function to just return the right value.
The very few users who do care (only BitcodeReader so far) can find out
how it's specified by accessing the Attribute directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362642 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
An argument that is return by a function but bit-casted before can still
be annotated as "returned". Make sure we do not crash for this case.
Reviewers: sunfish, stephenwlin, niravd, arsenm
Subscribers: wdng, hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59917
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362546 91177308-0d34-0410-b5e6-96231b3b80d8
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
The original commit did not remap byval types when linking modules, which broke
LTO. This version fixes that.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362128 91177308-0d34-0410-b5e6-96231b3b80d8
When we switch to opaque pointer types we will need some way to describe
how many bytes a 'byval' parameter should occupy on the stack. This adds
a (for now) optional extra type parameter.
If present, the type must match the pointee type of the argument.
Note to front-end maintainers: if this causes test failures, it's probably
because the "byval" attribute is printed after attributes without any parameter
after this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@362012 91177308-0d34-0410-b5e6-96231b3b80d8
This patch add the ISD::LRINT and ISD::LLRINT along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lrint/llrint generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D62017
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361875 91177308-0d34-0410-b5e6-96231b3b80d8
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
This commit was reverted because of the build failure.
The reason was mlformed patch.
Build failure fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361741 91177308-0d34-0410-b5e6-96231b3b80d8
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361644 91177308-0d34-0410-b5e6-96231b3b80d8
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them. The
result is saturated and clamped between the largest and smallest representable
values of the first 2 operands.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D55720
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361289 91177308-0d34-0410-b5e6-96231b3b80d8
Since INLINEASM_BR is a terminator we need to flush the pending exports before
emitting it. If we don't do this, a TokenFactor can be inserted between it and
the BR instruction emitted to finish the callbr lowering.
It looks like nodes are glued to the INLINEASM_BR so I had to make sure we emit
the TokenFactor before that.
Differential Revision: https://reviews.llvm.org/D59981
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361177 91177308-0d34-0410-b5e6-96231b3b80d8
We shouldn't really make assumptions about possible sizes for long and long long. And longer term we should probably support vectorizing these intrinsics. By making the result types not fixed we can support vectors as well.
Differential Revision: https://reviews.llvm.org/D62026
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@361169 91177308-0d34-0410-b5e6-96231b3b80d8
This patch add the ISD::LROUND and ISD::LLROUND along with new
intrinsics. The changes are straightforward as for other
floating-point rounding functions, with just some adjustments
required to handle the return value being an interger.
The idea is to optimize lround/llround generation for AArch64
in a subsequent patch. Current semantic is just route it to libm
symbol.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360889 91177308-0d34-0410-b5e6-96231b3b80d8
The new fptrunc and fpext intrinsics are constrained versions of the
regular fptrunc and fpext instructions.
Reviewed by: Andrew Kaylor, Craig Topper, Cameron McInally, Conner Abbot
Approved by: Craig Topper
Differential Revision: https://reviews.llvm.org/D55897
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360581 91177308-0d34-0410-b5e6-96231b3b80d8
We were applying a pointer truncation to floating types, which crashed LLVM.
That is Not A Good Thing(TM).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360421 91177308-0d34-0410-b5e6-96231b3b80d8
It's possible to use the 'y' mmx constraint with a type narrower than 64-bits.
This patch supports this by bitcasting the mmx type to 64-bits and then
truncating to the desired type.
There are probably other missing type combinations we need to support, but this
is the case we have a bug report for.
Fixes PR41748.
Differential Revision: https://reviews.llvm.org/D61582
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360069 91177308-0d34-0410-b5e6-96231b3b80d8
Based on PR41748, not all cases are handled in this function.
llvm_unreachable is treated as an optimization hint than can prune code paths
in a release build. This causes weird behavior when PR41748 is encountered on a
release build. It appears to generate an fp_round instruction from the floating
point code.
Making this a report_fatal_error prevents incorrect optimization of the code
and will instead generate a message to file a bug report.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@360008 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for supporting ILP32 on AArch64, this modifies the SelectionDAG
builder code so that pointers are allowed to have a larger type when "live" in
the DAG compared to memory.
Pointers get zero-extended whenever they are loaded, and truncated prior to
stores. In addition, a few not quite so obvious locations need updating:
* A GEP that has not been marked inbounds needs to enforce the IR-documented
2s-complement wrapping at the memory pointer size. Inbounds GEPs are
undefined if they overflow the address space, so no additional operations
are needed.
* Signed comparisons would give incorrect results if performed on the
zero-extended values.
This shouldn't affect CodeGen for now, but will become active when the AArch64
ILP32 support is committed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@359676 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@359072 91177308-0d34-0410-b5e6-96231b3b80d8
Arguments already have a flag to inform backends when they have been split up.
The AArch64 arm64_32 ABI makes use of these on return types too, so that code
emitted for armv7k can be ABI-compliant.
There should be no CodeGen changes yet, just making more information available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358399 91177308-0d34-0410-b5e6-96231b3b80d8
The arm64_32 ABI specifies that pointers (despite being 32-bits) should be
zero-extended to 64-bits when passed in registers for efficiency reasons. This
means that the SelectionDAG needs to be able to tell the backend that an
argument was originally a pointer, which is implmented here.
Additionally, some memory intrinsics need to be declared as taking an i8*
instead of an iPTR.
There should be no CodeGen change yet, but it will be triggered when AArch64
backend support for ILP32 is added.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@358398 91177308-0d34-0410-b5e6-96231b3b80d8
In the example below, we would previously emit two range checks, one for cases
1--3 and one for 4--6. This patch makes us exploit the fact that the
fall-through is unreachable and only one range check is necessary.
switch i32 %i, label %default [
i32 1, label %bb1
i32 2, label %bb1
i32 3, label %bb1
i32 4, label %bb2
i32 5, label %bb2
i32 6, label %bb2
]
default: unreachable
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357252 91177308-0d34-0410-b5e6-96231b3b80d8
Split out from D59749. The current implementation of isWrappedSet()
doesn't do what it says on the tin, and treats ranges like
[X, Max] as wrapping, because they are represented as [X, 0) when
using half-inclusive ranges. This also makes it inconsistent with
the semantics of isSignWrappedSet().
This patch renames isWrappedSet() to isUpperWrapped(), in preparation
for the introduction of a new isWrappedSet() method with corrected
behavior.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357107 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit by Ayonam Ray.
This commit adds a regression test for the issue discovered in the
previous commit: that the range check for the jump table can only be
omitted if the fall-through destination of the jump table is
unreachable, which isn't necessarily true just because the default of
the switch is unreachable.
This addresses the missing optimization in PR41242.
> During the lowering of a switch that would result in the generation of a
> jump table, a range check is performed before indexing into the jump
> table, for the switch value being outside the jump table range and a
> conditional branch is inserted to jump to the default block. In case the
> default block is unreachable, this conditional jump can be omitted. This
> patch implements omitting this conditional branch for unreachable
> defaults.
>
> Differential Revision: https://reviews.llvm.org/D52002
> Reviewers: Hans Wennborg, Eli Freidman, Roman Lebedev
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@357067 91177308-0d34-0410-b5e6-96231b3b80d8
The actual code change is fairly straight forward, but exercising it isn't. First, it turned out we weren't adding the appropriate flags in SelectionDAG. Second, it turned out that we've got some optimization gaps, so obvious test cases don't work.
My first attempt (in atomic-unordered.ll) points out a deficiency in our peephole-opt folding logic which I plan to fix separately. Instead, I'm exercising this through MachineLICM.
Differential Revision: https://reviews.llvm.org/D59375
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356494 91177308-0d34-0410-b5e6-96231b3b80d8
These changes are related to PR37743 and include:
SelectionDAGBuilder::visitSelect handles the unary SelectPatternFlavor::SPF_ABS case to build ABS node.
Delete the redundant recognizer of the integer ABS pattern from the DAGCombiner.
Add promoting the integer ABS node in the LegalizeIntegerType.
Expand-based legalization of integer result for the ABS nodes.
Expand-based legalization of ABS vector operations.
Add some integer abs testcases for different typesizes for Thumb arch
Add the custom ABS expanding and change the SAD pattern recognizer for X86 arch: The i64 result of the ABS is expanded to:
tmp = (SRA, Hi, 31)
Lo = (UADDO tmp, Lo)
Hi = (XOR tmp, (ADDCARRY tmp, hi, Lo:1))
Lo = (XOR tmp, Lo)
The "detectZextAbsDiff" function is changed for the recognition of pattern with the ABS node. Given a ABS node, detect the following pattern:
(ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
Change integer abs testcases for codegen with the ABS node support for AArch64.
Indicate that the ABS is legal for the i64 type when the NEON is supported.
Change the integer abs testcases to show changing of codegen.
Add combine and legalization of ABS nodes for Thumb arch.
Extend 'matchSelectPattern' to recognize the ABS patterns with ICMP_SGE condition.
For discussion, see https://bugs.llvm.org/show_bug.cgi?id=37743
Patch by: @ikulagin (Ivan Kulagin)
Differential Revision: https://reviews.llvm.org/D49837
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356468 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Look past bitcasts when looking for parameter debug values that are
described by frame-index loads in `EmitFuncArgumentDbgValue()`.
In the attached test case we would be left with an undef `DBG_VALUE`
for the parameter without this patch.
A similar fix was done for parameters passed in registers in D13005.
This fixes PR40777.
Reviewers: aprantl, vsk, jmorse
Reviewed By: aprantl
Subscribers: bjope, javed.absar, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D58831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356363 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In the new wasm EH proposal, `rethrow` takes an `except_ref` argument.
This change was missing in r352598.
This patch adds `llvm.wasm.rethrow.in.catch` intrinsic. This is an
intrinsic that's gonna eventually be lowered to wasm `rethrow`
instruction, but this intrinsic can appear only within a catchpad or a
cleanuppad scope. Also this intrinsic needs to be invokable - otherwise
EH pad successor for it will not be correctly generated in clang.
This also adds lowering logic for this intrinsic in
`SelectionDAGBuilder::visitInvoke`. This routine is basically a
specialized and simplified version of
`SelectionDAGBuilder::visitTargetIntrinsic`, but we can't use it
because if is only for `CallInst`s.
This deletes the previous `llvm.wasm.rethrow` intrinsic and related
tests, which was meant to be used within a `__cxa_rethrow` library
function. Turned out this needs some more logic, so the intrinsic for
this purpose will be added later.
LateEHPrepare takes a result value of `catch` and inserts it into
matching `rethrow` as an argument.
`RETHROW_IN_CATCH` is a pseudo instruction that serves as a link between
`llvm.wasm.rethrow.in.catch` and the real wasm `rethrow` instruction. To
generate a `rethrow` instruction, we need an `except_ref` argument,
which is generated from `catch` instruction. But `catch` instrutions are
added in LateEHPrepare pass, so we use `RETHROW_IN_CATCH`, which takes
no argument, until we are able to correctly lower it to `rethrow` in
LateEHPrepare.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59352
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@356316 91177308-0d34-0410-b5e6-96231b3b80d8