It can now disassemble code in situations where the effective load
address is different than the load address declared in the object file.
This happens for PIC, hence "dynamic".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188884 91177308-0d34-0410-b5e6-96231b3b80d8
When an MCTextAtom is split, all MCBasicBlocks backed by it are
automatically split, with a fallthrough between both blocks, and
the successors moved to the second block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188881 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
LLVM would generate DWARF with version 3 in the .debug_pubname and
.debug_pubtypes version fields. This would lead SGI dwarfdump to fail
parsing the DWARF with (in the instance of .debug_pubnames) would exit
with:
dwarfdump ERROR: dwarf_get_globals: DW_DLE_PUBNAMES_VERSION_ERROR (123)
This fixes PR16950.
Reviewers: echristo, dblaikie
Reviewed By: echristo
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1454
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188869 91177308-0d34-0410-b5e6-96231b3b80d8
SystemZTargetLowering::emitStringWrapper() previously loaded the character
into R0 before the loop and made R0 live on entry. I'd forgotten that
allocatable registers weren't allowed to be live across blocks at this stage,
and it confused LiveVariables enough to cause a miscompilation of f3 in
memchr-02.ll.
This patch instead loads R0 in the loop and leaves LICM to hoist it
after RA. This is actually what I'd tried originally, but I went for
the manual optimisation after noticing that R0 often wasn't being hoisted.
This bug forced me to go back and look at why, now fixed as r188774.
We should also try to optimize null checks so that they test the CC result
of the SRST directly. The select between null and the SRST GPR result could
then usually be deleted as dead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188779 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.
In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.
In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188728 91177308-0d34-0410-b5e6-96231b3b80d8
Also fix it calculating the wrong value. The struct index
is not a ConstantInt, so it was being interpreted as an array
index.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188713 91177308-0d34-0410-b5e6-96231b3b80d8
builtin. The GCC builtin expects the arguments to be passed by val,
whereas the LLVM intrinsic expects a pointer instead.
This is related to PR 16581 and rdar:14747994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188608 91177308-0d34-0410-b5e6-96231b3b80d8
When new virtual registers are created during splitting/spilling, defer
creation of the live interval until we need to use the live interval.
Along with the recent commits to notify LiveRangeEdit when new virtual
registers are created, this makes it possible for functions like
TargetInstrInfo::loadRegFromStackSlot() and
TargetInstrInfo::storeRegToStackSlot() to create multiple virtual
registers as part of the process of generating loads/stores for
different register classes, and then have the live intervals for those
new registers computed when they are needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188437 91177308-0d34-0410-b5e6-96231b3b80d8
MachineInstrSpan is initialized with a MachineBasicBlock::iterator,
and is intended to track which instructions are inserted before/after
that instruction from the time the MachineInstrSpan is created.
It provides a begin()/end() interface to walk the range of
instructions inserted around the initial instruction (including that
initial instruction).
It also provides a getInitial() interface to return the initial
iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188436 91177308-0d34-0410-b5e6-96231b3b80d8
Add a delegate class to MachineRegisterInfo with a single virtual
function, MRI_NoteNewVirtualRegister(). Update LiveRangeEdit to inherit
from this delegate class and override the definition of the callback
with an implementation that tracks the newly created virtual registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188435 91177308-0d34-0410-b5e6-96231b3b80d8
Track new virtual registers by register number, rather than by the live
interval created for them. This is the first step in separating the
creation of new virtual registers and new live intervals. Eventually
live intervals will be created and populated on demand after the virtual
registers have been created and used in instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188434 91177308-0d34-0410-b5e6-96231b3b80d8