Summary:
This change creates a layer over ScalarEvolution for LAA and LV, and centralizes the
usage of SCEV predicates. The SCEVPredicatedLayer takes the statically deduced knowledge
by ScalarEvolution and applies the knowledge from the SCEV predicates. The end goal is
that both LAA and LV should use this interface everywhere.
This also solves a problem involving the result of SCEV expression rewritting when
the predicate changes. Suppose we have the expression (sext {a,+,b}) and two predicates
P1: {a,+,b} has nsw
P2: b = 1.
Applying P1 and then P2 gives us {a,+,1}, while applying P2 and the P1 gives us
sext({a,+,1}) (the AddRec expression was changed by P2 so P1 no longer applies).
The SCEVPredicatedLayer maintains the order of transformations by feeding back
the results of previous transformations into new transformations, and therefore
avoiding this issue.
The SCEVPredicatedLayer maintains a cache to remember the results of previous
SCEV rewritting results. This also has the benefit of reducing the overall number
of expression rewrites.
Reviewers: mzolotukhin, anemet
Subscribers: jmolloy, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D14296
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255115 91177308-0d34-0410-b5e6-96231b3b80d8
During selection DAG legalization, extractelement is replaced with a load
instruction. To do this, a temporary store to the stack is used unless an
existing store is found that can be re-used.
If re-using a store, the chain going out of the store must be replaced by
the one going out of the new load (this ensures that any stores that must
take place after the store happens after the load, else the value might
be overwritten before it is loaded).
The problem is, if the extractelement index is dependent on the store
replacing the chain will introduce a cycle in the selection DAG (the load
uses the index, and by replacing the chain we will make the index dependent
on the load).
To fix this, if the index is dependent on the store, the store is skipped.
This is conservative as we may end up creating an unnecessary extra store
to the stack. However, the situation is not expected to occur very often.
Differential Revision: http://reviews.llvm.org/D15330
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255114 91177308-0d34-0410-b5e6-96231b3b80d8
The bots are now running the torture tests properly. Bin all failures from the GCC C torture tests so that we can tackle failures and make the tree go red on regressions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255111 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Although the multiclass for i32 selects might seem redundant as it has
only one instantiation, we will use it to replace the correspondent
patterns in Mips64r6InstrInfo.td in follow-up commits.
Reviewers: dsanders
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D14612
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255110 91177308-0d34-0410-b5e6-96231b3b80d8
Commited patch was intended to implement LH, LHE, LHU and LHUE instructions.
After commit test-suite failed with error message in the form of:
fatal error: error in backend: Cannot select: t124: i32,ch = load<LD2[%d](tbaa=<0x94acc48>), sext from i16> t0, t2, undef:i32
For that reason I decided to revert commit r254897 and make new patch which besides implementation and standard regression tests will also have dedicated tests (CodeGen) for the above error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255109 91177308-0d34-0410-b5e6-96231b3b80d8
loading the source Module, linking the function in the destination
module, and destroying the source Module before repeating with the
next function to import (potentially from the same Module).
Ideally we would keep the source Module alive and import the next
Function needed from this Module. Unfortunately this is not possible
because the linker does not leave it in a usable state.
However we can do better by first computing the list of all candidates
per Module, and only then load the source Module and import all the
function we need for it.
The trick to process callees is to materialize function in the source
module when building the list of function to import, and inspect them
in their source module, collecting the list of callees for each
callee.
When we move the the actual import, we will import from each source
module exactly once. Each source module is loaded exactly once.
The only drawback it that it requires to have all the lazy-loaded
source Module in memory at the same time.
Currently this patch already improves considerably the link time,
a multithreaded link of llvm-dis on my laptop was:
real 1m12.175s user 6m32.430s sys 0m10.529s
and is now:
real 0m40.697s user 2m10.237s sys 0m4.375s
Note: this is the full link time (linker+Import+Optimizer+CodeGen)
Differential Revision: http://reviews.llvm.org/D15178
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255100 91177308-0d34-0410-b5e6-96231b3b80d8
Otherwise, we think that most types that look like they'd fit in a
legal vector type are legal (so, basically, *any* vector type with a
size between 33 and 128 bits, I think, since we use pow2 alignment;
e.g., v2i25, v3f32, ...).
DataLayout::getTypeAllocSize rounds up based on alignment.
When checking for target intrinsic legality, that's not what we want:
if rounding makes a difference, the type isn't legal, and the
target intrinsics shouldn't be used, as they are always assumed legal.
One could make the argument that alloc size is ultimately the most
relevant here, since we're dealing with LD/ST intrinsics. That's only
true if we did legalize them though; that's a problem for another day.
Use DataLayout::getTypeSizeInBits instead of getTypeAllocSizeInBits.
Type::getSizeInBits can't be used because that'd gratuitously break
pointer vector support.
Some of these uses are currently fine, because we only hit them when
the type is already known legal (e.g., r114454). Update them for
consistency. It's faster to avoid the rounding anyway!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255089 91177308-0d34-0410-b5e6-96231b3b80d8
Test case attached (test case also checks that we don't drop the calling
convention, but that functionality was correct before this patch).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255088 91177308-0d34-0410-b5e6-96231b3b80d8
For an invoke with operand bundles, the [op_begin(), op_end()-3] range
can contain things other than invoke arguments. This change teaches
PruneEH to use arg_begin() and arg_end() explicitly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255073 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This fixes failure when trying to select
insertelement <4 x half> undef, half %a, i64 0
which gets transformed to a scalar_to_vector node.
The accompanying v4 and v8 tests fail instruction selection without this
patch.
Reviewers: ab, jmolloy
Subscribers: srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D15322
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255072 91177308-0d34-0410-b5e6-96231b3b80d8
The Linker destroys the source module (API change coming to make it explicit)
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255064 91177308-0d34-0410-b5e6-96231b3b80d8
On AVX and AVX2, BROADCAST instructions can load a scalar into all elements of a target vector.
This patch improves the lowering of 'splat' shuffles of a loaded vector into a broadcast - currently the lowering only works for cases where we are splatting the zero'th element, which is now generalised to any element.
Fix for PR23022
Differential Revision: http://reviews.llvm.org/D15310
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255061 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the fully redundant load part of EarlyCSE how to forward from atomic and volatile loads and stores, and how to eliminate unordered atomics (only). This patch does not include dead store elimination support for unordered atomics, that will follow in the near future.
The basic idea is that we allow all loads and stores to be tracked by the AvailableLoad table. We store a bit in the table which tracks whether load/store was atomic, and then only replace atomic loads with ones which were also atomic.
No attempt is made to refine our handling of ordered loads or stores. Those are still treated as full fences. We could pretty easily extend the release fence handling to release stores, but that should be a separate patch.
Differential Revision: http://reviews.llvm.org/D15337
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255054 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before ARMv5T, Thumb1 code could not pop PC, as described at D14357 and D14986;
so we need the special fixup in the epilogue.
Reviewers: jroelofs, qcolombet
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D15126
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255047 91177308-0d34-0410-b5e6-96231b3b80d8
AND/BIC instructions do accept SP/PC, so the register class should be
more generic (rGPR -> GPR) to cope with that case. Adding more tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255034 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We don't check the size operand on ext/dext*/ins/dins* yet because the
permitted range depends on the pos argument and we can't check that using
this mechanism.
The bug was that dextu/dinsu accepted 0..31 in the pos operand instead of 32..63.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D15190
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255015 91177308-0d34-0410-b5e6-96231b3b80d8
ARMv8.2-A adds 16-bit floating point versions of all existing SIMD
floating-point instructions. This is an optional extension, so all of
these instructions require the FeatureFullFP16 subtarget feature.
Note that VFP without SIMD is not a valid combination for any version of
ARMv8-A, but I have ensured that these instructions all depend on both
FeatureNEON and FeatureFullFP16 for consistency.
The ".2h" vector type specifier is now legal (for the scalar pairwise
reduction instructions), so some unrelated tests have been modified as
different error messages are emitted. This is not a problem as the
invalid operands are still caught.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255010 91177308-0d34-0410-b5e6-96231b3b80d8
Reduces the scope over which the struct is visible, making its usages
obvious. I did not move structs in cases where this wasn't a clear
win (the struct is too large, or is grouped in some other interesting
way).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255003 91177308-0d34-0410-b5e6-96231b3b80d8
The StringRef constructor is unnecessary (since we're converting to
std::string anyway), and having it requires an explicit call to
StringRef's or std::string's constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255000 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, vectors of halfs end up as ConstantVectors, but there isn't
a good reason they can't be ConstantDataVectors. This should save some
memory.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254991 91177308-0d34-0410-b5e6-96231b3b80d8
It's strange to duplicate the logic for emitting FP values into
emitGlobalConstantDataSequential, and it's even stranger that we end
up printing the verbose assembly comments differently between the two
paths. Just call into emitGlobalConstantFP rather than crudely
duplicating its logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@254988 91177308-0d34-0410-b5e6-96231b3b80d8