mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-22 12:08:33 +00:00
2e4d675d93
longer be created for fastcc functions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42925 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
Alpha | ||
ARM | ||
CBackend | ||
CellSPU | ||
IA64 | ||
Mips | ||
MSIL | ||
PowerPC | ||
Sparc | ||
X86 | ||
Makefile | ||
MRegisterInfo.cpp | ||
README.txt | ||
SubtargetFeature.cpp | ||
Target.td | ||
TargetAsmInfo.cpp | ||
TargetCallingConv.td | ||
TargetData.cpp | ||
TargetFrameInfo.cpp | ||
TargetInstrInfo.cpp | ||
TargetMachine.cpp | ||
TargetMachineRegistry.cpp | ||
TargetMachOWriterInfo.cpp | ||
TargetSchedule.td | ||
TargetSelectionDAG.td | ||
TargetSubtarget.cpp |
Target Independent Opportunities: //===---------------------------------------------------------------------===// With the recent changes to make the implicit def/use set explicit in machineinstrs, we should change the target descriptions for 'call' instructions so that the .td files don't list all the call-clobbered registers as implicit defs. Instead, these should be added by the code generator (e.g. on the dag). This has a number of uses: 1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions for their different impdef sets. 2. Targets with multiple calling convs (e.g. x86) which have different clobber sets don't need copies of call instructions. 3. 'Interprocedural register allocation' can be done to reduce the clobber sets of calls. //===---------------------------------------------------------------------===// Make the PPC branch selector target independant //===---------------------------------------------------------------------===// Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and precision don't matter (ffastmath). Misc/mandel will like this. :) //===---------------------------------------------------------------------===// Solve this DAG isel folding deficiency: int X, Y; void fn1(void) { X = X | (Y << 3); } compiles to fn1: movl Y, %eax shll $3, %eax orl X, %eax movl %eax, X ret The problem is the store's chain operand is not the load X but rather a TokenFactor of the load X and load Y, which prevents the folding. There are two ways to fix this: 1. The dag combiner can start using alias analysis to realize that y/x don't alias, making the store to X not dependent on the load from Y. 2. The generated isel could be made smarter in the case it can't disambiguate the pointers. Number 1 is the preferred solution. This has been "fixed" by a TableGen hack. But that is a short term workaround which will be removed once the proper fix is made. //===---------------------------------------------------------------------===// On targets with expensive 64-bit multiply, we could LSR this: for (i = ...; ++i) { x = 1ULL << i; into: long long tmp = 1; for (i = ...; ++i, tmp+=tmp) x = tmp; This would be a win on ppc32, but not x86 or ppc64. //===---------------------------------------------------------------------===// Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0) //===---------------------------------------------------------------------===// Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply. //===---------------------------------------------------------------------===// Interesting? testcase for add/shift/mul reassoc: int bar(int x, int y) { return x*x*x+y+x*x*x*x*x*y*y*y*y; } int foo(int z, int n) { return bar(z, n) + bar(2*z, 2*n); } Reassociate should handle the example in GCC PR16157. //===---------------------------------------------------------------------===// These two functions should generate the same code on big-endian systems: int g(int *j,int *l) { return memcmp(j,l,4); } int h(int *j, int *l) { return *j - *l; } this could be done in SelectionDAGISel.cpp, along with other special cases, for 1,2,4,8 bytes. //===---------------------------------------------------------------------===// It would be nice to revert this patch: http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html And teach the dag combiner enough to simplify the code expanded before legalize. It seems plausible that this knowledge would let it simplify other stuff too. //===---------------------------------------------------------------------===// For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal to the type size. It works but can be overly conservative as the alignment of specific vector types are target dependent. //===---------------------------------------------------------------------===// We should add 'unaligned load/store' nodes, and produce them from code like this: v4sf example(float *P) { return (v4sf){P[0], P[1], P[2], P[3] }; } //===---------------------------------------------------------------------===// We should constant fold vector type casts at the LLVM level, regardless of the cast. Currently we cannot fold some casts because we don't have TargetData information in the constant folder, so we don't know the endianness of the target! //===---------------------------------------------------------------------===// Add support for conditional increments, and other related patterns. Instead of: movl 136(%esp), %eax cmpl $0, %eax je LBB16_2 #cond_next LBB16_1: #cond_true incl _foo LBB16_2: #cond_next emit: movl _foo, %eax cmpl $1, %edi sbbl $-1, %eax movl %eax, _foo //===---------------------------------------------------------------------===// Combine: a = sin(x), b = cos(x) into a,b = sincos(x). Expand these to calls of sin/cos and stores: double sincos(double x, double *sin, double *cos); float sincosf(float x, float *sin, float *cos); long double sincosl(long double x, long double *sin, long double *cos); Doing so could allow SROA of the destination pointers. See also: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687 //===---------------------------------------------------------------------===// Scalar Repl cannot currently promote this testcase to 'ret long cst': %struct.X = type { i32, i32 } %struct.Y = type { %struct.X } define i64 @bar() { %retval = alloca %struct.Y, align 8 %tmp12 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 0 store i32 0, i32* %tmp12 %tmp15 = getelementptr %struct.Y* %retval, i32 0, i32 0, i32 1 store i32 1, i32* %tmp15 %retval.upgrd.1 = bitcast %struct.Y* %retval to i64* %retval.upgrd.2 = load i64* %retval.upgrd.1 ret i64 %retval.upgrd.2 } it should be extended to do so. //===---------------------------------------------------------------------===// -scalarrepl should promote this to be a vector scalar. %struct..0anon = type { <4 x float> } define void @test1(<4 x float> %V, float* %P) { %u = alloca %struct..0anon, align 16 %tmp = getelementptr %struct..0anon* %u, i32 0, i32 0 store <4 x float> %V, <4 x float>* %tmp %tmp1 = bitcast %struct..0anon* %u to [4 x float]* %tmp.upgrd.1 = getelementptr [4 x float]* %tmp1, i32 0, i32 1 %tmp.upgrd.2 = load float* %tmp.upgrd.1 %tmp3 = mul float %tmp.upgrd.2, 2.000000e+00 store float %tmp3, float* %P ret void } //===---------------------------------------------------------------------===// Turn this into a single byte store with no load (the other 3 bytes are unmodified): void %test(uint* %P) { %tmp = load uint* %P %tmp14 = or uint %tmp, 3305111552 %tmp15 = and uint %tmp14, 3321888767 store uint %tmp15, uint* %P ret void } //===---------------------------------------------------------------------===// dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x. Compile: int bar(int x) { int t = __builtin_clz(x); return -(t>>5); } to: _bar: addic r3,r3,-1 subfe r3,r3,r3 blr //===---------------------------------------------------------------------===// Legalize should lower ctlz like this: ctlz(x) = popcnt((x-1) & ~x) on targets that have popcnt but not ctlz. itanium, what else? //===---------------------------------------------------------------------===// quantum_sigma_x in 462.libquantum contains the following loop: for(i=0; i<reg->size; i++) { /* Flip the target bit of each basis state */ reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target); } Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just so cool to turn it into something like: long long Res = ((MAX_UNSIGNED) 1 << target); if (target < 32) { for(i=0; i<reg->size; i++) reg->node[i].state ^= Res & 0xFFFFFFFFULL; } else { for(i=0; i<reg->size; i++) reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL } ... which would only do one 32-bit XOR per loop iteration instead of two. It would also be nice to recognize the reg->size doesn't alias reg->node[i], but alas... //===---------------------------------------------------------------------===// This isn't recognized as bswap by instcombine: unsigned int swap_32(unsigned int v) { v = ((v & 0x00ff00ffU) << 8) | ((v & 0xff00ff00U) >> 8); v = ((v & 0x0000ffffU) << 16) | ((v & 0xffff0000U) >> 16); return v; } Nor is this (yes, it really is bswap): unsigned long reverse(unsigned v) { unsigned t; t = v ^ ((v << 16) | (v >> 16)); t &= ~0xff0000; v = (v << 24) | (v >> 8); return v ^ (t >> 8); } //===---------------------------------------------------------------------===// These should turn into single 16-bit (unaligned?) loads on little/big endian processors. unsigned short read_16_le(const unsigned char *adr) { return adr[0] | (adr[1] << 8); } unsigned short read_16_be(const unsigned char *adr) { return (adr[0] << 8) | adr[1]; } //===---------------------------------------------------------------------===// -instcombine should handle this transform: icmp pred (sdiv X / C1 ), C2 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands. Currently InstCombine avoids this transform but will do it when the signs of the operands and the sign of the divide match. See the FIXME in InstructionCombining.cpp in the visitSetCondInst method after the switch case for Instruction::UDiv (around line 4447) for more details. The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of this construct. //===---------------------------------------------------------------------===// Instcombine misses several of these cases (see the testcase in the patch): http://gcc.gnu.org/ml/gcc-patches/2006-10/msg01519.html //===---------------------------------------------------------------------===// viterbi speeds up *significantly* if the various "history" related copy loops are turned into memcpy calls at the source level. We need a "loops to memcpy" pass. //===---------------------------------------------------------------------===// Consider: typedef unsigned U32; typedef unsigned long long U64; int test (U32 *inst, U64 *regs) { U64 effective_addr2; U32 temp = *inst; int r1 = (temp >> 20) & 0xf; int b2 = (temp >> 16) & 0xf; effective_addr2 = temp & 0xfff; if (b2) effective_addr2 += regs[b2]; b2 = (temp >> 12) & 0xf; if (b2) effective_addr2 += regs[b2]; effective_addr2 &= regs[4]; if ((effective_addr2 & 3) == 0) return 1; return 0; } Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems, we don't eliminate the computation of the top half of effective_addr2 because we don't have whole-function selection dags. On x86, this means we use one extra register for the function when effective_addr2 is declared as U64 than when it is declared U32. //===---------------------------------------------------------------------===// Promote for i32 bswap can use i64 bswap + shr. Useful on targets with 64-bit regs and bswap, like itanium. //===---------------------------------------------------------------------===// LSR should know what GPR types a target has. This code: volatile short X, Y; // globals void foo(int N) { int i; for (i = 0; i < N; i++) { X = i; Y = i*4; } } produces two identical IV's (after promotion) on PPC/ARM: LBB1_1: @bb.preheader mov r3, #0 mov r2, r3 mov r1, r3 LBB1_2: @bb ldr r12, LCPI1_0 ldr r12, [r12] strh r2, [r12] ldr r12, LCPI1_1 ldr r12, [r12] strh r3, [r12] add r1, r1, #1 <- [0,+,1] add r3, r3, #4 add r2, r2, #1 <- [0,+,1] cmp r1, r0 bne LBB1_2 @bb //===---------------------------------------------------------------------===// Tail call elim should be more aggressive, checking to see if the call is followed by an uncond branch to an exit block. ; This testcase is due to tail-duplication not wanting to copy the return ; instruction into the terminating blocks because there was other code ; optimized out of the function after the taildup happened. ;RUN: llvm-upgrade < %s | llvm-as | opt -tailcallelim | llvm-dis | not grep call int %t4(int %a) { entry: %tmp.1 = and int %a, 1 %tmp.2 = cast int %tmp.1 to bool br bool %tmp.2, label %then.0, label %else.0 then.0: %tmp.5 = add int %a, -1 %tmp.3 = call int %t4( int %tmp.5 ) br label %return else.0: %tmp.7 = setne int %a, 0 br bool %tmp.7, label %then.1, label %return then.1: %tmp.11 = add int %a, -2 %tmp.9 = call int %t4( int %tmp.11 ) br label %return return: %result.0 = phi int [ 0, %else.0 ], [ %tmp.3, %then.0 ], [ %tmp.9, %then.1 ] ret int %result.0 } //===---------------------------------------------------------------------===// Tail recursion elimination is not transforming this function, because it is returning n, which fails the isDynamicConstant check in the accumulator recursion checks. long long fib(const long long n) { switch(n) { case 0: case 1: return n; default: return fib(n-1) + fib(n-2); } } //===---------------------------------------------------------------------===// Argument promotion should promote arguments for recursive functions, like this: ; RUN: llvm-upgrade < %s | llvm-as | opt -argpromotion | llvm-dis | grep x.val implementation ; Functions: internal int %foo(int* %x) { entry: %tmp = load int* %x %tmp.foo = call int %foo(int *%x) ret int %tmp.foo } int %bar(int* %x) { entry: %tmp3 = call int %foo( int* %x) ; <int>[#uses=1] ret int %tmp3 }