mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-22 20:20:03 +00:00
8e41ed7c4e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42751 91177308-0d34-0410-b5e6-96231b3b80d8
626 lines
22 KiB
C++
626 lines
22 KiB
C++
//===-- TargetData.cpp - Data size & alignment routines --------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines target properties related to datatype size/offset/alignment
|
|
// information.
|
|
//
|
|
// This structure should be created once, filled in if the defaults are not
|
|
// correct and then passed around by const&. None of the members functions
|
|
// require modification to the object.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
// Handle the Pass registration stuff necessary to use TargetData's.
|
|
namespace {
|
|
// Register the default SparcV9 implementation...
|
|
RegisterPass<TargetData> X("targetdata", "Target Data Layout");
|
|
}
|
|
char TargetData::ID = 0;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Support for StructLayout
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
|
|
StructAlignment = 0;
|
|
StructSize = 0;
|
|
NumElements = ST->getNumElements();
|
|
|
|
// Loop over each of the elements, placing them in memory...
|
|
for (unsigned i = 0, e = NumElements; i != e; ++i) {
|
|
const Type *Ty = ST->getElementType(i);
|
|
unsigned TyAlign;
|
|
uint64_t TySize;
|
|
TyAlign = (ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty));
|
|
TySize = TD.getTypeSize(Ty);
|
|
|
|
// Add padding if necessary to make the data element aligned properly...
|
|
if (StructSize % TyAlign != 0)
|
|
StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding...
|
|
|
|
// Keep track of maximum alignment constraint
|
|
StructAlignment = std::max(TyAlign, StructAlignment);
|
|
|
|
MemberOffsets[i] = StructSize;
|
|
StructSize += TySize; // Consume space for this data item
|
|
}
|
|
|
|
// Empty structures have alignment of 1 byte.
|
|
if (StructAlignment == 0) StructAlignment = 1;
|
|
|
|
// Add padding to the end of the struct so that it could be put in an array
|
|
// and all array elements would be aligned correctly.
|
|
if (StructSize % StructAlignment != 0)
|
|
StructSize = (StructSize/StructAlignment + 1) * StructAlignment;
|
|
}
|
|
|
|
|
|
/// getElementContainingOffset - Given a valid offset into the structure,
|
|
/// return the structure index that contains it.
|
|
unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
|
|
const uint64_t *SI =
|
|
std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
|
|
assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
|
|
--SI;
|
|
assert(*SI <= Offset && "upper_bound didn't work");
|
|
assert((SI == &MemberOffsets[0] || *(SI-1) < Offset) &&
|
|
(SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
|
|
"Upper bound didn't work!");
|
|
return SI-&MemberOffsets[0];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetAlignElem, TargetAlign support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetAlignElem
|
|
TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
|
|
unsigned char pref_align, uint32_t bit_width) {
|
|
TargetAlignElem retval;
|
|
retval.AlignType = align_type;
|
|
retval.ABIAlign = abi_align;
|
|
retval.PrefAlign = pref_align;
|
|
retval.TypeBitWidth = bit_width;
|
|
return retval;
|
|
}
|
|
|
|
bool
|
|
TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
|
|
return (AlignType == rhs.AlignType
|
|
&& ABIAlign == rhs.ABIAlign
|
|
&& PrefAlign == rhs.PrefAlign
|
|
&& TypeBitWidth == rhs.TypeBitWidth);
|
|
}
|
|
|
|
std::ostream &
|
|
TargetAlignElem::dump(std::ostream &os) const {
|
|
return os << AlignType
|
|
<< TypeBitWidth
|
|
<< ":" << (int) (ABIAlign * 8)
|
|
<< ":" << (int) (PrefAlign * 8);
|
|
}
|
|
|
|
const TargetAlignElem TargetData::InvalidAlignmentElem =
|
|
TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetData Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/*!
|
|
A TargetDescription string consists of a sequence of hyphen-delimited
|
|
specifiers for target endianness, pointer size and alignments, and various
|
|
primitive type sizes and alignments. A typical string looks something like:
|
|
<br><br>
|
|
"E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64"
|
|
<br><br>
|
|
(note: this string is not fully specified and is only an example.)
|
|
\p
|
|
Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align,
|
|
below) dictates how a type will be aligned within an aggregate and when used
|
|
as an argument. Preferred alignment (pref_align, below) determines a type's
|
|
alignment when emitted as a global.
|
|
\p
|
|
Specifier string details:
|
|
<br><br>
|
|
<i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e"
|
|
specifies a little-endian target data model.
|
|
<br><br>
|
|
<i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size,
|
|
ABI and preferred alignment.
|
|
<br><br>
|
|
<i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type alignment. Type is
|
|
one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka
|
|
packed) or aggregate. Size indicates the size, e.g., 32 or 64 bits.
|
|
\p
|
|
The default string, fully specified is:
|
|
<br><br>
|
|
"E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64"
|
|
"-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64"
|
|
"-v64:64:64-v128:128:128"
|
|
<br><br>
|
|
Note that in the case of aggregates, 0 is the default ABI and preferred
|
|
alignment. This is a special case, where the aggregate's computed worst-case
|
|
alignment will be used.
|
|
*/
|
|
void TargetData::init(const std::string &TargetDescription) {
|
|
std::string temp = TargetDescription;
|
|
|
|
LittleEndian = false;
|
|
PointerMemSize = 8;
|
|
PointerABIAlign = 8;
|
|
PointerPrefAlign = PointerABIAlign;
|
|
|
|
// Default alignments
|
|
setAlignment(INTEGER_ALIGN, 1, 1, 1); // Bool
|
|
setAlignment(INTEGER_ALIGN, 1, 1, 8); // Byte
|
|
setAlignment(INTEGER_ALIGN, 2, 2, 16); // short
|
|
setAlignment(INTEGER_ALIGN, 4, 4, 32); // int
|
|
setAlignment(INTEGER_ALIGN, 4, 8, 64); // long
|
|
setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
|
|
setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
|
|
setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32
|
|
setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
|
|
setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct, union, class, ...
|
|
|
|
while (!temp.empty()) {
|
|
std::string token = getToken(temp, "-");
|
|
std::string arg0 = getToken(token, ":");
|
|
const char *p = arg0.c_str();
|
|
switch(*p) {
|
|
case 'E':
|
|
LittleEndian = false;
|
|
break;
|
|
case 'e':
|
|
LittleEndian = true;
|
|
break;
|
|
case 'p':
|
|
PointerMemSize = atoi(getToken(token,":").c_str()) / 8;
|
|
PointerABIAlign = atoi(getToken(token,":").c_str()) / 8;
|
|
PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8;
|
|
if (PointerPrefAlign == 0)
|
|
PointerPrefAlign = PointerABIAlign;
|
|
break;
|
|
case 'i':
|
|
case 'v':
|
|
case 'f':
|
|
case 'a':
|
|
case 's': {
|
|
AlignTypeEnum align_type;
|
|
switch(*p) {
|
|
case 'i': align_type = INTEGER_ALIGN; break;
|
|
case 'v': align_type = VECTOR_ALIGN; break;
|
|
case 'f': align_type = FLOAT_ALIGN; break;
|
|
case 'a': align_type = AGGREGATE_ALIGN; break;
|
|
case 's': align_type = STACK_ALIGN; break;
|
|
}
|
|
uint32_t size = (uint32_t) atoi(++p);
|
|
unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8;
|
|
unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8;
|
|
if (pref_align == 0)
|
|
pref_align = abi_align;
|
|
setAlignment(align_type, abi_align, pref_align, size);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
TargetData::TargetData(const Module *M)
|
|
: ImmutablePass((intptr_t)&ID) {
|
|
init(M->getDataLayout());
|
|
}
|
|
|
|
void
|
|
TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
|
|
unsigned char pref_align, uint32_t bit_width) {
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
|
if (Alignments[i].AlignType == align_type &&
|
|
Alignments[i].TypeBitWidth == bit_width) {
|
|
// Update the abi, preferred alignments.
|
|
Alignments[i].ABIAlign = abi_align;
|
|
Alignments[i].PrefAlign = pref_align;
|
|
return;
|
|
}
|
|
}
|
|
|
|
Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
|
|
pref_align, bit_width));
|
|
}
|
|
|
|
/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
|
|
/// preferred if ABIInfo = false) the target wants for the specified datatype.
|
|
unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
|
|
uint32_t BitWidth, bool ABIInfo) const {
|
|
// Check to see if we have an exact match and remember the best match we see.
|
|
int BestMatchIdx = -1;
|
|
int LargestInt = -1;
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
|
if (Alignments[i].AlignType == AlignType &&
|
|
Alignments[i].TypeBitWidth == BitWidth)
|
|
return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
|
|
|
|
// The best match so far depends on what we're looking for.
|
|
if (AlignType == VECTOR_ALIGN) {
|
|
// If this is a specification for a smaller vector type, we will fall back
|
|
// to it. This happens because <128 x double> can be implemented in terms
|
|
// of 64 <2 x double>.
|
|
if (Alignments[i].AlignType == VECTOR_ALIGN &&
|
|
Alignments[i].TypeBitWidth < BitWidth) {
|
|
// Verify that we pick the biggest of the fallbacks.
|
|
if (BestMatchIdx == -1 ||
|
|
Alignments[BestMatchIdx].TypeBitWidth < BitWidth)
|
|
BestMatchIdx = i;
|
|
}
|
|
} else if (AlignType == INTEGER_ALIGN &&
|
|
Alignments[i].AlignType == INTEGER_ALIGN) {
|
|
// The "best match" for integers is the smallest size that is larger than
|
|
// the BitWidth requested.
|
|
if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
|
|
Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
|
|
BestMatchIdx = i;
|
|
// However, if there isn't one that's larger, then we must use the
|
|
// largest one we have (see below)
|
|
if (LargestInt == -1 ||
|
|
Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
|
|
LargestInt = i;
|
|
}
|
|
}
|
|
|
|
// For integers, if we didn't find a best match, use the largest one found.
|
|
if (BestMatchIdx == -1)
|
|
BestMatchIdx = LargestInt;
|
|
|
|
// Okay, we didn't find an exact solution. Fall back here depending on what
|
|
// is being looked for.
|
|
assert(BestMatchIdx != -1 && "Didn't find alignment info for this datatype!");
|
|
|
|
// Since we got a "best match" index, just return it.
|
|
return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
|
|
: Alignments[BestMatchIdx].PrefAlign;
|
|
}
|
|
|
|
/// LayoutInfo - The lazy cache of structure layout information maintained by
|
|
/// TargetData. Note that the struct types must have been free'd before
|
|
/// llvm_shutdown is called (and thus this is deallocated) because all the
|
|
/// targets with cached elements should have been destroyed.
|
|
///
|
|
typedef std::pair<const TargetData*,const StructType*> LayoutKey;
|
|
|
|
struct DenseMapLayoutKeyInfo {
|
|
static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); }
|
|
static inline LayoutKey getTombstoneKey() {
|
|
return LayoutKey((TargetData*)(intptr_t)-1, 0);
|
|
}
|
|
static unsigned getHashValue(const LayoutKey &Val) {
|
|
return DenseMapInfo<void*>::getHashValue(Val.first) ^
|
|
DenseMapInfo<void*>::getHashValue(Val.second);
|
|
}
|
|
static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
|
|
static bool isPod() { return true; }
|
|
};
|
|
|
|
typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy;
|
|
static ManagedStatic<LayoutInfoTy> LayoutInfo;
|
|
|
|
|
|
TargetData::~TargetData() {
|
|
if (LayoutInfo.isConstructed()) {
|
|
// Remove any layouts for this TD.
|
|
LayoutInfoTy &TheMap = *LayoutInfo;
|
|
for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end();
|
|
I != E; ) {
|
|
if (I->first.first == this) {
|
|
I->second->~StructLayout();
|
|
free(I->second);
|
|
TheMap.erase(I++);
|
|
} else {
|
|
++I;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
|
|
LayoutInfoTy &TheMap = *LayoutInfo;
|
|
|
|
StructLayout *&SL = TheMap[LayoutKey(this, Ty)];
|
|
if (SL) return SL;
|
|
|
|
// Otherwise, create the struct layout. Because it is variable length, we
|
|
// malloc it, then use placement new.
|
|
int NumElts = Ty->getNumElements();
|
|
StructLayout *L =
|
|
(StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t));
|
|
|
|
// Set SL before calling StructLayout's ctor. The ctor could cause other
|
|
// entries to be added to TheMap, invalidating our reference.
|
|
SL = L;
|
|
|
|
new (L) StructLayout(Ty, *this);
|
|
return L;
|
|
}
|
|
|
|
/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
|
|
/// objects. If a TargetData object is alive when types are being refined and
|
|
/// removed, this method must be called whenever a StructType is removed to
|
|
/// avoid a dangling pointer in this cache.
|
|
void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
|
|
if (!LayoutInfo.isConstructed()) return; // No cache.
|
|
|
|
LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty));
|
|
if (I != LayoutInfo->end()) {
|
|
I->second->~StructLayout();
|
|
free(I->second);
|
|
LayoutInfo->erase(I);
|
|
}
|
|
}
|
|
|
|
|
|
std::string TargetData::getStringRepresentation() const {
|
|
std::string repr;
|
|
repr.append(LittleEndian ? "e" : "E");
|
|
repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))).
|
|
append(":").append(itostr((int64_t) (PointerABIAlign * 8))).
|
|
append(":").append(itostr((int64_t) (PointerPrefAlign * 8)));
|
|
for (align_const_iterator I = Alignments.begin();
|
|
I != Alignments.end();
|
|
++I) {
|
|
repr.append("-").append(1, (char) I->AlignType).
|
|
append(utostr((int64_t) I->TypeBitWidth)).
|
|
append(":").append(utostr((uint64_t) (I->ABIAlign * 8))).
|
|
append(":").append(utostr((uint64_t) (I->PrefAlign * 8)));
|
|
}
|
|
return repr;
|
|
}
|
|
|
|
|
|
uint64_t TargetData::getTypeSize(const Type *Ty) const {
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
case Type::LabelTyID:
|
|
case Type::PointerTyID:
|
|
return getPointerSize();
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
uint64_t Size;
|
|
unsigned char Alignment;
|
|
Size = getTypeSize(ATy->getElementType());
|
|
Alignment = getABITypeAlignment(ATy->getElementType());
|
|
uint64_t AlignedSize = (Size + Alignment - 1)/Alignment*Alignment;
|
|
return AlignedSize*ATy->getNumElements();
|
|
}
|
|
case Type::StructTyID: {
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
|
|
return Layout->getSizeInBytes();
|
|
}
|
|
case Type::IntegerTyID: {
|
|
unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (BitWidth <= 8) {
|
|
return 1;
|
|
} else if (BitWidth <= 16) {
|
|
return 2;
|
|
} else if (BitWidth <= 32) {
|
|
return 4;
|
|
} else if (BitWidth <= 64) {
|
|
return 8;
|
|
} else {
|
|
// The size of this > 64 bit type is chosen as a multiple of the
|
|
// preferred alignment of the largest "native" size the target supports.
|
|
// We first obtain the the alignment info for this type and then compute
|
|
// the next largest multiple of that size.
|
|
uint64_t size = getAlignmentInfo(INTEGER_ALIGN, BitWidth, false) * 8;
|
|
return (((BitWidth / (size)) + (BitWidth % size != 0)) * size) / 8;
|
|
}
|
|
break;
|
|
}
|
|
case Type::VoidTyID:
|
|
return 1;
|
|
case Type::FloatTyID:
|
|
return 4;
|
|
case Type::DoubleTyID:
|
|
return 8;
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
return 16;
|
|
// In memory objects this is always aligned to a higher boundary, but
|
|
// only 10 bytes contain information.
|
|
case Type::X86_FP80TyID:
|
|
return 10;
|
|
case Type::VectorTyID: {
|
|
const VectorType *PTy = cast<VectorType>(Ty);
|
|
return PTy->getBitWidth() / 8;
|
|
}
|
|
default:
|
|
assert(0 && "TargetData::getTypeSize(): Unsupported type");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
|
|
if (Ty->isInteger())
|
|
return cast<IntegerType>(Ty)->getBitWidth();
|
|
else
|
|
return getTypeSize(Ty) * 8;
|
|
}
|
|
|
|
uint64_t TargetData::getABITypeSizeInBits(const Type *Ty) const {
|
|
if (Ty->isInteger())
|
|
return cast<IntegerType>(Ty)->getBitWidth();
|
|
else
|
|
return getABITypeSize(Ty) * 8;
|
|
}
|
|
/*!
|
|
\param abi_or_pref Flag that determines which alignment is returned. true
|
|
returns the ABI alignment, false returns the preferred alignment.
|
|
\param Ty The underlying type for which alignment is determined.
|
|
|
|
Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
|
|
== false) for the requested type \a Ty.
|
|
*/
|
|
unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
|
|
int AlignType = -1;
|
|
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
/* Early escape for the non-numeric types */
|
|
case Type::LabelTyID:
|
|
case Type::PointerTyID:
|
|
return (abi_or_pref
|
|
? getPointerABIAlignment()
|
|
: getPointerPrefAlignment());
|
|
case Type::ArrayTyID:
|
|
return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
|
|
|
|
case Type::StructTyID: {
|
|
// Packed structure types always have an ABI alignment of one.
|
|
if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
|
|
return 1;
|
|
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
|
|
unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref);
|
|
return std::max(Align, (unsigned)Layout->getAlignment());
|
|
}
|
|
case Type::IntegerTyID:
|
|
case Type::VoidTyID:
|
|
AlignType = INTEGER_ALIGN;
|
|
break;
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
// PPC_FP128TyID and FP128TyID have different data contents, but the
|
|
// same size and alignment, so they look the same here.
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
case Type::X86_FP80TyID:
|
|
AlignType = FLOAT_ALIGN;
|
|
break;
|
|
case Type::VectorTyID: {
|
|
const VectorType *VTy = cast<VectorType>(Ty);
|
|
// Degenerate vectors are assumed to be scalar-ized
|
|
if (VTy->getNumElements() == 1)
|
|
return getAlignment(VTy->getElementType(), abi_or_pref);
|
|
else
|
|
AlignType = VECTOR_ALIGN;
|
|
break;
|
|
}
|
|
default:
|
|
assert(0 && "Bad type for getAlignment!!!");
|
|
break;
|
|
}
|
|
|
|
return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSize(Ty) * 8,
|
|
abi_or_pref);
|
|
}
|
|
|
|
unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
|
|
return getAlignment(Ty, true);
|
|
}
|
|
|
|
unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const {
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
|
|
if (Alignments[i].AlignType == STACK_ALIGN)
|
|
return Alignments[i].ABIAlign;
|
|
|
|
return getABITypeAlignment(Ty);
|
|
}
|
|
|
|
unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
|
|
return getAlignment(Ty, false);
|
|
}
|
|
|
|
unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
|
|
unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
|
|
assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
|
|
return Log2_32(Align);
|
|
}
|
|
|
|
/// getIntPtrType - Return an unsigned integer type that is the same size or
|
|
/// greater to the host pointer size.
|
|
const Type *TargetData::getIntPtrType() const {
|
|
return IntegerType::get(getPointerSizeInBits());
|
|
}
|
|
|
|
|
|
uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
|
|
unsigned NumIndices) const {
|
|
const Type *Ty = ptrTy;
|
|
assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()");
|
|
uint64_t Result = 0;
|
|
|
|
generic_gep_type_iterator<Value* const*>
|
|
TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
|
|
for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
|
|
if (const StructType *STy = dyn_cast<StructType>(*TI)) {
|
|
assert(Indices[CurIDX]->getType() == Type::Int32Ty &&
|
|
"Illegal struct idx");
|
|
unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
|
|
|
|
// Get structure layout information...
|
|
const StructLayout *Layout = getStructLayout(STy);
|
|
|
|
// Add in the offset, as calculated by the structure layout info...
|
|
Result += Layout->getElementOffset(FieldNo);
|
|
|
|
// Update Ty to refer to current element
|
|
Ty = STy->getElementType(FieldNo);
|
|
} else {
|
|
// Update Ty to refer to current element
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// Get the array index and the size of each array element.
|
|
int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
|
|
Result += arrayIdx * (int64_t)getTypeSize(Ty);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// getPreferredAlignmentLog - Return the preferred alignment of the
|
|
/// specified global, returned in log form. This includes an explicitly
|
|
/// requested alignment (if the global has one).
|
|
unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
|
|
const Type *ElemType = GV->getType()->getElementType();
|
|
unsigned Alignment = getPreferredTypeAlignmentShift(ElemType);
|
|
if (GV->getAlignment() > (1U << Alignment))
|
|
Alignment = Log2_32(GV->getAlignment());
|
|
|
|
if (GV->hasInitializer()) {
|
|
if (Alignment < 4) {
|
|
// If the global is not external, see if it is large. If so, give it a
|
|
// larger alignment.
|
|
if (getTypeSize(ElemType) > 128)
|
|
Alignment = 4; // 16-byte alignment.
|
|
}
|
|
}
|
|
return Alignment;
|
|
}
|