llvm/lib/Transforms/Scalar/ConstantProp.cpp
2002-04-28 19:55:58 +00:00

229 lines
8.2 KiB
C++

//===- ConstantProp.cpp - Code to perform Constant Propogation ------------===//
//
// This file implements constant propogation and merging:
//
// Specifically, this:
// * Folds multiple identical constants in the constant pool together
// Note that if one is named and the other is not, that the result gets the
// original name.
// * Converts instructions like "add int %1, %2" into a direct def of %3 in
// the constant pool
// * Converts conditional branches on a constant boolean value into direct
// branches.
// * Converts phi nodes with one incoming def to the incoming def directly
// . Converts switch statements with one entry into a test & conditional
// branch
// . Converts switches on constant values into an unconditional branch.
//
// Notice that:
// * This pass has a habit of making definitions be dead. It is a good idea
// to to run a DCE pass sometime after running this pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/ConstantProp.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Module.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/Pass.h"
inline static bool
ConstantFoldUnaryInst(BasicBlock *BB, BasicBlock::iterator &II,
UnaryOperator *Op, Constant *D) {
Constant *ReplaceWith = ConstantFoldUnaryInstruction(Op->getOpcode(), D);
if (!ReplaceWith) return false; // Nothing new to change...
// Replaces all of the uses of a variable with uses of the constant.
Op->replaceAllUsesWith(ReplaceWith);
// Remove the operator from the list of definitions...
Op->getParent()->getInstList().remove(II);
// The new constant inherits the old name of the operator...
if (Op->hasName())
ReplaceWith->setName(Op->getName(), BB->getParent()->getSymbolTableSure());
// Delete the operator now...
delete Op;
return true;
}
inline static bool
ConstantFoldCast(BasicBlock *BB, BasicBlock::iterator &II,
CastInst *CI, Constant *D) {
Constant *ReplaceWith = ConstantFoldCastInstruction(D, CI->getType());
if (!ReplaceWith) return false; // Nothing new to change...
// Replaces all of the uses of a variable with uses of the constant.
CI->replaceAllUsesWith(ReplaceWith);
// Remove the cast from the list of definitions...
CI->getParent()->getInstList().remove(II);
// The new constant inherits the old name of the cast...
if (CI->hasName())
ReplaceWith->setName(CI->getName(), BB->getParent()->getSymbolTableSure());
// Delete the cast now...
delete CI;
return true;
}
inline static bool
ConstantFoldBinaryInst(BasicBlock *BB, BasicBlock::iterator &II,
BinaryOperator *Op,
Constant *D1, Constant *D2) {
Constant *ReplaceWith = ConstantFoldBinaryInstruction(Op->getOpcode(), D1,D2);
if (!ReplaceWith) return false; // Nothing new to change...
// Replaces all of the uses of a variable with uses of the constant.
Op->replaceAllUsesWith(ReplaceWith);
// Remove the operator from the list of definitions...
Op->getParent()->getInstList().remove(II);
// The new constant inherits the old name of the operator...
if (Op->hasName())
ReplaceWith->setName(Op->getName(), BB->getParent()->getSymbolTableSure());
// Delete the operator now...
delete Op;
return true;
}
// ConstantFoldTerminator - If a terminator instruction is predicated on a
// constant value, convert it into an unconditional branch to the constant
// destination.
//
bool ConstantFoldTerminator(BasicBlock *BB, BasicBlock::iterator &II,
TerminatorInst *T) {
// Branch - See if we are conditional jumping on constant
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
BasicBlock *Dest1 = cast<BasicBlock>(BI->getOperand(0));
BasicBlock *Dest2 = cast<BasicBlock>(BI->getOperand(1));
if (ConstantBool *Cond = dyn_cast<ConstantBool>(BI->getCondition())) {
// Are we branching on constant?
// YES. Change to unconditional branch...
BasicBlock *Destination = Cond->getValue() ? Dest1 : Dest2;
BasicBlock *OldDest = Cond->getValue() ? Dest2 : Dest1;
//cerr << "Function: " << T->getParent()->getParent()
// << "\nRemoving branch from " << T->getParent()
// << "\n\nTo: " << OldDest << endl;
// Let the basic block know that we are letting go of it. Based on this,
// it will adjust it's PHI nodes.
assert(BI->getParent() && "Terminator not inserted in block!");
OldDest->removePredecessor(BI->getParent());
// Set the unconditional destination, and change the insn to be an
// unconditional branch.
BI->setUnconditionalDest(Destination);
II = BB->end()-1; // Update instruction iterator!
return true;
}
#if 0
// FIXME: TODO: This doesn't work if the destination has PHI nodes with
// different incoming values on each branch!
//
else if (Dest2 == Dest1) { // Conditional branch to same location?
// This branch matches something like this:
// br bool %cond, label %Dest, label %Dest
// and changes it into: br label %Dest
// Let the basic block know that we are letting go of one copy of it.
assert(BI->getParent() && "Terminator not inserted in block!");
Dest1->removePredecessor(BI->getParent());
// Change a conditional branch to unconditional.
BI->setUnconditionalDest(Dest1);
return true;
}
#endif
}
return false;
}
// ConstantFoldInstruction - If an instruction references constants, try to fold
// them together...
//
bool doConstantPropogation(BasicBlock *BB, BasicBlock::iterator &II) {
Instruction *Inst = *II;
if (isa<BinaryOperator>(Inst)) {
Constant *D1 = dyn_cast<Constant>(Inst->getOperand(0));
Constant *D2 = dyn_cast<Constant>(Inst->getOperand(1));
if (D1 && D2)
return ConstantFoldBinaryInst(BB, II, cast<BinaryOperator>(Inst), D1, D2);
} else if (CastInst *CI = dyn_cast<CastInst>(Inst)) {
Constant *D = dyn_cast<Constant>(CI->getOperand(0));
if (D) return ConstantFoldCast(BB, II, CI, D);
} else if (UnaryOperator *UInst = dyn_cast<UnaryOperator>(Inst)) {
Constant *D = dyn_cast<Constant>(UInst->getOperand(0));
if (D) return ConstantFoldUnaryInst(BB, II, UInst, D);
} else if (TerminatorInst *TInst = dyn_cast<TerminatorInst>(Inst)) {
return ConstantFoldTerminator(BB, II, TInst);
} else if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
// If it's a PHI node and only has one operand
// Then replace it directly with that operand.
assert(PN->getNumOperands() && "PHI Node must have at least one operand!");
if (PN->getNumOperands() == 1) { // If the PHI Node has exactly 1 operand
Value *V = PN->getOperand(0);
PN->replaceAllUsesWith(V); // Replace all uses of this PHI
// Unlink from basic block
PN->getParent()->getInstList().remove(II);
if (PN->hasName()) // Inherit PHINode name
V->setName(PN->getName(), BB->getParent()->getSymbolTableSure());
delete PN; // Finally, delete the node...
return true;
}
}
return false;
}
// DoConstPropPass - Propogate constants and do constant folding on instructions
// this returns true if something was changed, false if nothing was changed.
//
static bool DoConstPropPass(Function *F) {
bool SomethingChanged = false;
for (Function::iterator BBI = F->begin(); BBI != F->end(); ++BBI) {
BasicBlock *BB = *BBI;
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); )
if (doConstantPropogation(BB, I))
SomethingChanged = true;
else
++I;
}
return SomethingChanged;
}
namespace {
struct ConstantPropogation : public FunctionPass {
inline bool runOnFunction(Function *F) {
bool Modified = false;
// Fold constants until we make no progress...
while (DoConstPropPass(F)) Modified = true;
return Modified;
}
};
}
Pass *createConstantPropogationPass() {
return new ConstantPropogation();
}