mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-12 19:18:48 +00:00

When we have a loop with a known upper bound on the number of iterations, and furthermore know that either the number of iterations will be either exactly that upper bound or zero, then we can fully unroll up to that upper bound keeping only the first loop test to check for the zero iteration case. Most of the work here is in plumbing this 'max-or-zero' information from the part of scalar evolution where it's detected through to loop unrolling. I've also gone for the safe default of 'false' everywhere but howManyLessThans which could probably be improved. Differential Revision: https://reviews.llvm.org/D25682 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@284818 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//