llvm/lib/Transforms/Scalar/InstructionCombining.cpp
Chris Lattner b3bc8fa755 Fix bug: test/Regression/Transforms/InstCombine/2002-05-14-TouchDeletedInst.ll
"This testcase caused instcombine to fail because it got the same instruction on
it's worklist more than once (which is ok), but then deleted the instruction.
Since the inst stayed on the worklist, as soon as it came back up to be
processed, bad things happened, and opt asserted."


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2623 91177308-0d34-0410-b5e6-96231b3b80d8
2002-05-14 15:24:07 +00:00

580 lines
19 KiB
C++

//===- InstructionCombining.cpp - Combine multiple instructions -------------=//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendancy to
// make instructions dead, so a subsequent DIE pass is useful. This pass is
// where algebraic simplification happens.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
// This is a simple worklist driven algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ConstantHandling.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/iPHINode.h"
#include "llvm/iOperators.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/StatisticReporter.h"
#include <algorithm>
static Statistic<> NumCombined("instcombine\t- Number of insts combined");
namespace {
class InstCombiner : public FunctionPass,
public InstVisitor<InstCombiner, Instruction*> {
// Worklist of all of the instructions that need to be simplified.
std::vector<Instruction*> WorkList;
void AddUsesToWorkList(Instruction *I) {
// The instruction was simplified, add all users of the instruction to
// the work lists because they might get more simplified now...
//
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
WorkList.push_back(cast<Instruction>(*UI));
}
public:
const char *getPassName() const { return "Instruction Combining"; }
virtual bool runOnFunction(Function *F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.preservesCFG();
}
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitNot(UnaryOperator *I);
Instruction *visitAdd(BinaryOperator *I);
Instruction *visitSub(BinaryOperator *I);
Instruction *visitMul(BinaryOperator *I);
Instruction *visitDiv(BinaryOperator *I);
Instruction *visitRem(BinaryOperator *I);
Instruction *visitAnd(BinaryOperator *I);
Instruction *visitOr (BinaryOperator *I);
Instruction *visitXor(BinaryOperator *I);
Instruction *visitSetCondInst(BinaryOperator *I);
Instruction *visitShiftInst(Instruction *I);
Instruction *visitCastInst(CastInst *CI);
Instruction *visitPHINode(PHINode *PN);
Instruction *visitGetElementPtrInst(GetElementPtrInst *GEP);
Instruction *visitMemAccessInst(MemAccessInst *MAI);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction *I) { return 0; }
};
}
Instruction *InstCombiner::visitNot(UnaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
// not (not X) = X
if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(0)))
if (Op->getOpcode() == Instruction::Not) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op->getOperand(0));
return I;
}
return 0;
}
// Make sure that this instruction has a constant on the right hand side if it
// has any constant arguments. If not, fix it an return true.
//
static bool SimplifyBinOp(BinaryOperator *I) {
if (isa<Constant>(I->getOperand(0)) && !isa<Constant>(I->getOperand(1)))
return !I->swapOperands();
return false;
}
// dyn_castNegInst - Given a 'sub' instruction, return the RHS of the
// instruction if the LHS is a constant zero (which is the 'negate' form).
//
static inline Value *dyn_castNegInst(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I || I->getOpcode() != Instruction::Sub) return 0;
if (I->getOperand(0) == Constant::getNullValue(I->getType()))
return I->getOperand(1);
return 0;
}
Instruction *InstCombiner::visitAdd(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
// Eliminate 'add int %X, 0'
if (I->getType()->isIntegral() &&
RHS == Constant::getNullValue(I->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(LHS);
return I;
}
// -A + B --> B - A
if (Value *V = dyn_castNegInst(LHS))
return BinaryOperator::create(Instruction::Sub, RHS, V);
// A + -B --> A - B
if (Value *V = dyn_castNegInst(RHS))
return BinaryOperator::create(Instruction::Sub, LHS, V);
// Simplify add instructions with a constant RHS...
if (Constant *Op2 = dyn_cast<Constant>(RHS)) {
if (BinaryOperator *ILHS = dyn_cast<BinaryOperator>(LHS)) {
if (ILHS->getOpcode() == Instruction::Add &&
isa<Constant>(ILHS->getOperand(1))) {
// Fold:
// %Y = add int %X, 1
// %Z = add int %Y, 1
// into:
// %Z = add int %X, 2
//
if (Constant *Val = *Op2 + *cast<Constant>(ILHS->getOperand(1))) {
I->setOperand(0, ILHS->getOperand(0));
I->setOperand(1, Val);
return I;
}
}
}
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitSub(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
if (Op0 == Op1) { // sub X, X -> 0
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
return I;
}
// If this is a subtract instruction with a constant RHS, convert it to an add
// instruction of a negative constant
//
if (Constant *Op2 = dyn_cast<Constant>(Op1))
if (Constant *RHS = *Constant::getNullValue(I->getType()) - *Op2) // 0 - RHS
return BinaryOperator::create(Instruction::Add, Op0, RHS, I->getName());
// If this is a 'C = x-B', check to see if 'B = -A', so that C = x+A...
if (Value *V = dyn_castNegInst(Op1))
return BinaryOperator::create(Instruction::Add, Op0, V);
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression is
// not used by anyone else...
//
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
if (Op1I->use_size() == 1) {
// Swap the two operands of the subexpr...
Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
Op1I->setOperand(0, IIOp1);
Op1I->setOperand(1, IIOp0);
// Create the new top level add instruction...
return BinaryOperator::create(Instruction::Add, Op0, Op1);
}
return 0;
}
Instruction *InstCombiner::visitMul(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
bool Changed = SimplifyBinOp(I);
Value *Op1 = I->getOperand(0);
// Simplify add instructions with a constant RHS...
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) {
if (I->getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(1)){
// Eliminate 'mul int %X, 1'
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
} else if (I->getType()->isIntegral() &&
cast<ConstantInt>(Op2)->equalsInt(2)) {
// Convert 'mul int %X, 2' to 'add int %X, %X'
return BinaryOperator::create(Instruction::Add, Op1, Op1, I->getName());
} else if (Op2->isNullValue()) {
// Eliminate 'mul int %X, 0'
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op2); // Set this value to zero directly
return I;
}
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitDiv(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
// div X, 1 == X
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1)))
if (RHS->equalsInt(1)) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(I->getOperand(0));
return I;
}
return 0;
}
Instruction *InstCombiner::visitRem(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
// rem X, 1 == 0
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1)))
if (RHS->equalsInt(1)) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
return I;
}
return 0;
}
static Constant *getMaxValue(const Type *Ty) {
assert(Ty == Type::BoolTy || Ty->isIntegral());
if (Ty == Type::BoolTy)
return ConstantBool::True;
if (Ty->isSigned())
return ConstantSInt::get(Ty, -1);
else if (Ty->isUnsigned()) {
// Calculate -1 casted to the right type...
unsigned TypeBits = Ty->getPrimitiveSize()*8;
uint64_t Val = (uint64_t)-1LL; // All ones
Val >>= 64-TypeBits; // Shift out unwanted 1 bits...
return ConstantUInt::get(Ty, Val);
}
return 0;
}
Instruction *InstCombiner::visitAnd(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
bool Changed = SimplifyBinOp(I);
Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
// and X, X = X and X, 0 == 0
if (Op0 == Op1 || Op1 == Constant::getNullValue(I->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
}
// and X, -1 == X
if (Constant *RHS = dyn_cast<Constant>(Op1))
if (RHS == getMaxValue(I->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op0);
return I;
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitOr(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
bool Changed = SimplifyBinOp(I);
Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
// or X, X = X or X, 0 == X
if (Op0 == Op1 || Op1 == Constant::getNullValue(I->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op0);
return I;
}
// or X, -1 == -1
if (Constant *RHS = dyn_cast<Constant>(Op1))
if (RHS == getMaxValue(I->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitXor(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
bool Changed = SimplifyBinOp(I);
Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
// xor X, X = 0
if (Op0 == Op1) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
return I;
}
// xor X, 0 == X
if (Op1 == Constant::getNullValue(I->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op0);
return I;
}
return Changed ? I : 0;
}
// isTrueWhenEqual - Return true if the specified setcondinst instruction is
// true when both operands are equal...
//
static bool isTrueWhenEqual(Instruction *I) {
return I->getOpcode() == Instruction::SetEQ ||
I->getOpcode() == Instruction::SetGE ||
I->getOpcode() == Instruction::SetLE;
}
Instruction *InstCombiner::visitSetCondInst(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
bool Changed = SimplifyBinOp(I);
// setcc X, X
if (I->getOperand(0) == I->getOperand(1)) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(ConstantBool::get(isTrueWhenEqual(I)));
return I;
}
// setcc <global*>, 0 - Global value addresses are never null!
if (isa<GlobalValue>(I->getOperand(0)) &&
isa<ConstantPointerNull>(I->getOperand(1))) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(ConstantBool::get(!isTrueWhenEqual(I)));
return I;
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitShiftInst(Instruction *I) {
if (I->use_empty()) return 0; // Don't fix dead instructions...
assert(I->getOperand(1)->getType() == Type::UByteTy);
Value *Op0 = I->getOperand(0), *Op1 = I->getOperand(1);
// shl X, 0 == X and shr X, 0 == X
// shl 0, X == 0 and shr 0, X == 0
if (Op1 == Constant::getNullValue(Type::UByteTy) ||
Op0 == Constant::getNullValue(Op0->getType())) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op0);
return I;
}
// shl int X, 32 = 0 and shr sbyte Y, 9 = 0, ... just don't eliminate shr of
// a signed value.
//
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(Op1)) {
unsigned TypeBits = Op0->getType()->getPrimitiveSize()*8;
if (CUI->getValue() >= TypeBits &&
!(Op0->getType()->isSigned() && I->getOpcode() == Instruction::Shr)) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Constant::getNullValue(Op0->getType()));
return I;
}
}
return 0;
}
// isEliminableCastOfCast - Return true if it is valid to eliminate the CI
// instruction.
//
static inline bool isEliminableCastOfCast(const CastInst *CI,
const CastInst *CSrc) {
assert(CI->getOperand(0) == CSrc);
const Type *SrcTy = CSrc->getOperand(0)->getType();
const Type *MidTy = CSrc->getType();
const Type *DstTy = CI->getType();
// It is legal to eliminate the instruction if casting A->B->A
if (SrcTy == DstTy) return true;
// Allow free casting and conversion of sizes as long as the sign doesn't
// change...
if (SrcTy->isSigned() == MidTy->isSigned() &&
MidTy->isSigned() == DstTy->isSigned())
return true;
// Otherwise, we cannot succeed. Specifically we do not want to allow things
// like: short -> ushort -> uint, because this can create wrong results if
// the input short is negative!
//
return false;
}
// CastInst simplification
//
Instruction *InstCombiner::visitCastInst(CastInst *CI) {
if (CI->use_empty()) return 0; // Don't fix dead instructions...
// If the user is casting a value to the same type, eliminate this cast
// instruction...
if (CI->getType() == CI->getOperand(0)->getType() && !CI->use_empty()) {
AddUsesToWorkList(CI); // Add all modified instrs to worklist
CI->replaceAllUsesWith(CI->getOperand(0));
return CI;
}
// If casting the result of another cast instruction, try to eliminate this
// one!
//
if (CastInst *CSrc = dyn_cast<CastInst>(CI->getOperand(0)))
if (isEliminableCastOfCast(CI, CSrc)) {
// This instruction now refers directly to the cast's src operand. This
// has a good chance of making CSrc dead.
CI->setOperand(0, CSrc->getOperand(0));
return CI;
}
return 0;
}
// PHINode simplification
//
Instruction *InstCombiner::visitPHINode(PHINode *PN) {
if (PN->use_empty()) return 0; // Don't fix dead instructions...
// If the PHI node only has one incoming value, eliminate the PHI node...
if (PN->getNumIncomingValues() == 1) {
AddUsesToWorkList(PN); // Add all modified instrs to worklist
PN->replaceAllUsesWith(PN->getIncomingValue(0));
return PN;
}
return 0;
}
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst *GEP) {
// Is it getelementptr %P, uint 0
// If so, elminate the noop.
if (GEP->getNumOperands() == 2 && !GEP->use_empty() &&
GEP->getOperand(1) == Constant::getNullValue(Type::UIntTy)) {
AddUsesToWorkList(GEP); // Add all modified instrs to worklist
GEP->replaceAllUsesWith(GEP->getOperand(0));
return GEP;
}
return visitMemAccessInst(GEP);
}
// Combine Indices - If the source pointer to this mem access instruction is a
// getelementptr instruction, combine the indices of the GEP into this
// instruction
//
Instruction *InstCombiner::visitMemAccessInst(MemAccessInst *MAI) {
GetElementPtrInst *Src =
dyn_cast<GetElementPtrInst>(MAI->getPointerOperand());
if (!Src) return 0;
std::vector<Value *> Indices;
// Only special case we have to watch out for is pointer arithmetic on the
// 0th index of MAI.
unsigned FirstIdx = MAI->getFirstIndexOperandNumber();
if (FirstIdx == MAI->getNumOperands() ||
(FirstIdx == MAI->getNumOperands()-1 &&
MAI->getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) {
// Replace the index list on this MAI with the index on the getelementptr
Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
} else if (*MAI->idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
Indices.insert(Indices.end(), MAI->idx_begin()+1, MAI->idx_end());
}
if (Indices.empty()) return 0; // Can't do the fold?
switch (MAI->getOpcode()) {
case Instruction::GetElementPtr:
return new GetElementPtrInst(Src->getOperand(0), Indices, MAI->getName());
case Instruction::Load:
return new LoadInst(Src->getOperand(0), Indices, MAI->getName());
case Instruction::Store:
return new StoreInst(MAI->getOperand(0), Src->getOperand(0), Indices);
default:
assert(0 && "Unknown memaccessinst!");
break;
}
abort();
return 0;
}
bool InstCombiner::runOnFunction(Function *F) {
bool Changed = false;
WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));
while (!WorkList.empty()) {
Instruction *I = WorkList.back(); // Get an instruction from the worklist
WorkList.pop_back();
// Now that we have an instruction, try combining it to simplify it...
Instruction *Result = visit(I);
if (Result) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
// Instructions can end up on the worklist more than once. Make sure
// we do not process an instruction that has been deleted.
std::vector<Instruction*>::iterator It = std::find(WorkList.begin(),
WorkList.end(), I);
while (It != WorkList.end()) {
It = WorkList.erase(It);
It = std::find(It, WorkList.end(), I);
}
ReplaceInstWithInst(I, Result);
}
WorkList.push_back(Result);
AddUsesToWorkList(Result);
Changed = true;
}
}
return Changed;
}
Pass *createInstructionCombiningPass() {
return new InstCombiner();
}