llvm/lib/CodeGen/RegAllocBasic.cpp

530 lines
19 KiB
C++
Raw Normal View History

//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "RegAllocBase.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
#endif
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <queue>
using namespace llvm;
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
// Temporary verification option until we can put verification inside
// MachineVerifier.
static cl::opt<bool>
VerifyRegAlloc("verify-regalloc",
cl::desc("Verify live intervals before renaming"));
class PhysicalRegisterDescription : public AbstractRegisterDescription {
const TargetRegisterInfo *tri_;
public:
PhysicalRegisterDescription(const TargetRegisterInfo *tri): tri_(tri) {}
virtual const char *getName(unsigned reg) const { return tri_->getName(reg); }
};
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
// context
MachineFunction *mf_;
const TargetMachine *tm_;
MachineRegisterInfo *mri_;
// analyses
LiveStacks *ls_;
RenderMachineFunction *rmf_;
// state
std::auto_ptr<Spiller> spiller_;
public:
RABasic();
/// Return the pass name.
virtual const char* getPassName() const {
return "Basic Register Allocator";
}
/// RABasic analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
virtual void releaseMemory();
virtual Spiller &spiller() { return *spiller_; }
virtual unsigned selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
// We should not need to publish the initializer as long as no other passes
// require RABasic.
#if 0 // disable INITIALIZE_PASS
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
#ifndef NDEBUG
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
#endif
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
#endif // disable INITIALIZE_PASS
RABasic::RABasic(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
au.setPreservesCFG();
au.addRequired<LiveIntervals>();
au.addPreserved<SlotIndexes>();
if (StrongPHIElim)
au.addRequiredID(StrongPHIEliminationID);
au.addRequiredTransitive<RegisterCoalescer>();
au.addRequired<CalculateSpillWeights>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
au.addRequiredID(MachineDominatorsID);
au.addPreservedID(MachineDominatorsID);
au.addRequired<MachineLoopInfo>();
au.addPreserved<MachineLoopInfo>();
au.addRequired<VirtRegMap>();
au.addPreserved<VirtRegMap>();
DEBUG(au.addRequired<RenderMachineFunction>());
MachineFunctionPass::getAnalysisUsage(au);
}
void RABasic::releaseMemory() {
spiller_.reset(0);
RegAllocBase::releaseMemory();
}
#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void RegAllocBase::verify() {
LvrBitSet visitedVRegs;
OwningArrayPtr<LvrBitSet> unionVRegs(new LvrBitSet[physReg2liu_.numRegs()]);
// Verify disjoint unions.
for (unsigned preg = 0; preg < physReg2liu_.numRegs(); ++preg) {
DEBUG(PhysicalRegisterDescription prd(tri_); physReg2liu_[preg].dump(&prd));
LvrBitSet &vregs = unionVRegs[preg];
physReg2liu_[preg].verify(vregs);
// Union + intersection test could be done efficiently in one pass, but
// don't add a method to SparseBitVector unless we really need it.
assert(!visitedVRegs.intersects(vregs) && "vreg in multiple unions");
visitedVRegs |= vregs;
}
// Verify vreg coverage.
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (li.empty() ) continue;
if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
if (!vrm_->hasPhys(reg)) continue; // spilled?
unsigned preg = vrm_->getPhys(reg);
if (!unionVRegs[preg].test(reg)) {
dbgs() << "LiveVirtReg " << reg << " not in union " <<
tri_->getName(preg) << "\n";
llvm_unreachable("unallocated live vreg");
}
}
// FIXME: I'm not sure how to verify spilled intervals.
}
#endif //!NDEBUG
//===----------------------------------------------------------------------===//
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LIUArray::init(unsigned nRegs) {
array_.reset(new LiveIntervalUnion[nRegs]);
nRegs_ = nRegs;
for (unsigned pr = 0; pr < nRegs; ++pr) {
array_[pr].init(pr);
}
}
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
LiveIntervals &lis) {
tri_ = &tri;
vrm_ = &vrm;
lis_ = &lis;
physReg2liu_.init(tri_->getNumRegs());
// Cache an interferece query for each physical reg
queries_.reset(new LiveIntervalUnion::Query[physReg2liu_.numRegs()]);
}
void RegAllocBase::LIUArray::clear() {
nRegs_ = 0;
array_.reset(0);
}
void RegAllocBase::releaseMemory() {
physReg2liu_.clear();
}
namespace llvm {
/// This class defines a queue of live virtual registers prioritized by spill
/// weight. The heaviest vreg is popped first.
///
/// Currently, this is trivial wrapper that gives us an opaque type in the
/// header, but we may later give it a virtual interface for register allocators
/// to override the priority queue comparator.
class LiveVirtRegQueue {
typedef std::priority_queue
<LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority> PQ;
PQ pq_;
public:
// Is the queue empty?
bool empty() { return pq_.empty(); }
// Get the highest priority lvr (top + pop)
LiveInterval *get() {
LiveInterval *lvr = pq_.top();
pq_.pop();
return lvr;
}
// Add this lvr to the queue
void push(LiveInterval *lvr) {
pq_.push(lvr);
}
};
} // end namespace llvm
// Visit all the live virtual registers. If they are already assigned to a
// physical register, unify them with the corresponding LiveIntervalUnion,
// otherwise push them on the priority queue for later assignment.
void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &lvrQ) {
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (li.empty()) continue;
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
physReg2liu_[reg].unify(li);
}
else {
lvrQ.push(&li);
}
}
}
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {
LiveVirtRegQueue lvrQ;
seedLiveVirtRegs(lvrQ);
while (!lvrQ.empty()) {
LiveInterval *lvr = lvrQ.get();
typedef SmallVector<LiveInterval*, 4> LVRVec;
LVRVec splitLVRs;
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
if (availablePhysReg) {
DEBUG(dbgs() << "allocating: " << tri_->getName(availablePhysReg) <<
" " << *lvr << '\n');
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
physReg2liu_[availablePhysReg].unify(*lvr);
}
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI) {
if ((*lvrI)->empty()) continue;
DEBUG(dbgs() << "queuing new interval: " << **lvrI << "\n");
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
}
}
}
// Check if this live virtual reg interferes with a physical register. If not,
// then check for interference on each register that aliases with the physical
// register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &lvr,
unsigned preg) {
queries_[preg].init(&lvr, &physReg2liu_[preg]);
if (queries_[preg].checkInterference())
return preg;
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
queries_[*asI].init(&lvr, &physReg2liu_[*asI]);
if (queries_[*asI].checkInterference())
return *asI;
}
return 0;
}
// Sort live virtual registers by their register number.
struct LessLiveVirtualReg
: public std::binary_function<LiveInterval, LiveInterval, bool> {
bool operator()(const LiveInterval *left, const LiveInterval *right) const {
return left->reg < right->reg;
}
};
// Spill all interferences currently assigned to this physical register.
void RegAllocBase::spillReg(unsigned reg,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
LiveIntervalUnion::Query &query = queries_[reg];
const SmallVectorImpl<LiveInterval*> &pendingSpills =
query.interferingVRegs();
for (SmallVectorImpl<LiveInterval*>::const_iterator I = pendingSpills.begin(),
E = pendingSpills.end(); I != E; ++I) {
LiveInterval &lvr = **I;
DEBUG(dbgs() <<
"extracting from " << tri_->getName(reg) << " " << lvr << '\n');
// Deallocate the interfering vreg by removing it from the union.
// A LiveInterval instance may not be in a union during modification!
physReg2liu_[reg].extract(lvr);
// After extracting segments, the query's results are invalid.
query.clear();
// Clear the vreg assignment.
vrm_->clearVirt(lvr.reg);
// Spill the extracted interval.
spiller().spill(&lvr, splitLVRs, pendingSpills);
}
}
// Spill or split all live virtual registers currently unified under preg that
// interfere with lvr. The newly spilled or split live intervals are returned by
// appending them to splitLVRs.
bool
RegAllocBase::spillInterferences(unsigned preg,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
// Record each interference and determine if all are spillable before mutating
// either the union or live intervals.
std::vector<LiveInterval*> spilledLVRs;
unsigned numInterferences = queries_[preg].collectInterferingVRegs();
if (queries_[preg].seenUnspillableVReg()) {
return false;
}
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
numInterferences += queries_[*asI].collectInterferingVRegs();
if (queries_[*asI].seenUnspillableVReg()) {
return false;
}
}
DEBUG(dbgs() << "spilling " << tri_->getName(preg) <<
" interferences with " << queries_[preg].lvr() << "\n");
assert(numInterferences > 0 && "expect interference");
// Spill each interfering vreg allocated to preg or an alias.
spillReg(preg, splitLVRs);
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI)
spillReg(*asI, splitLVRs);
return true;
}
//===----------------------------------------------------------------------===//
// RABasic Implementation
//===----------------------------------------------------------------------===//
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// Minimal implementation of register assignment and splitting--spills whenever
// we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them.
unsigned RABasic::selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
// Populate a list of physical register spill candidates.
std::vector<unsigned> pregSpillCands;
// Check for an available register in this class.
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
trcEnd = trc->allocation_order_end(*mf_);
trcI != trcEnd; ++trcI) {
unsigned preg = *trcI;
// Check interference and intialize queries for this lvr as a side effect.
unsigned interfReg = checkPhysRegInterference(lvr, preg);
if (interfReg == 0) {
// Found an available register.
return preg;
}
LiveInterval *interferingVirtReg =
queries_[interfReg].firstInterference().liuSegPos()->liveVirtReg;
// The current lvr must either spillable, or one of its interferences must
// have less spill weight.
if (interferingVirtReg->weight < lvr.weight ) {
pregSpillCands.push_back(preg);
}
}
// Try to spill another interfering reg with less spill weight.
//
// FIXME: RAGreedy will sort this list by spill weight.
for (std::vector<unsigned>::iterator pregI = pregSpillCands.begin(),
pregE = pregSpillCands.end(); pregI != pregE; ++pregI) {
if (!spillInterferences(*pregI, splitLVRs)) continue;
unsigned interfReg = checkPhysRegInterference(lvr, *pregI);
if (interfReg != 0) {
const LiveSegment &seg =
*queries_[interfReg].firstInterference().liuSegPos();
dbgs() << "spilling cannot free " << tri_->getName(*pregI) <<
" for " << lvr.reg << " with interference " << seg.liveVirtReg << "\n";
llvm_unreachable("Interference after spill.");
}
// Tell the caller to allocate to this newly freed physical register.
return *pregI;
}
// No other spill candidates were found, so spill the current lvr.
DEBUG(dbgs() << "spilling: " << lvr << '\n');
SmallVector<LiveInterval*, 1> pendingSpills;
spiller().spill(&lvr, splitLVRs, pendingSpills);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm);
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
mf_ = &mf;
tm_ = &mf.getTarget();
mri_ = &mf.getRegInfo();
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>());
// We may want to force InlineSpiller for this register allocator. For
// now we're also experimenting with the standard spiller.
//
//spiller_.reset(createInlineSpiller(*this, *mf_, *vrm_));
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
allocatePhysRegs();
// Diagnostic output before rewriting
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
// optional HTML output
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
// FIXME: Verification currently must run before VirtRegRewriter. We should
// make the rewriter a separate pass and override verifyAnalysis instead. When
// that happens, verification naturally falls under VerifyMachineCode.
#ifndef NDEBUG
if (VerifyRegAlloc) {
// Verify accuracy of LiveIntervals. The standard machine code verifier
// ensures that each LiveIntervals covers all uses of the virtual reg.
// FIXME: MachineVerifier is currently broken when using the standard
// spiller. Enable it for InlineSpiller only.
// mf_->verify(this);
// Verify that LiveIntervals are partitioned into unions and disjoint within
// the unions.
verify();
}
#endif // !NDEBUG
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator()
{
return new RABasic();
}