llvm/lib/IR/Attributes.cpp

988 lines
32 KiB
C++
Raw Normal View History

//===-- Attributes.cpp - Implement AttributesList -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// \brief This file implements the Attribute, AttributeImpl, AttrBuilder,
// AttributeSetImpl, and AttributeSet classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Attributes.h"
#include "AttributeImpl.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Atomic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Attribute Construction Methods
//===----------------------------------------------------------------------===//
Attribute Attribute::get(LLVMContext &Context, AttrKind Kind) {
AttrBuilder B;
return Attribute::get(Context, B.addAttribute(Kind));
}
Attribute Attribute::get(LLVMContext &Context, AttrBuilder &B) {
// If there are no attributes, return an empty Attribute class.
if (!B.hasAttributes())
return Attribute();
// Otherwise, build a key to look up the existing attributes.
LLVMContextImpl *pImpl = Context.pImpl;
FoldingSetNodeID ID;
ConstantInt *CI = ConstantInt::get(Type::getInt64Ty(Context), B.Raw());
ID.AddPointer(CI);
void *InsertPoint;
AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint);
if (!PA) {
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
PA = new AttributeImpl(Context, CI);
pImpl->AttrsSet.InsertNode(PA, InsertPoint);
}
// Return the AttributesList that we found or created.
return Attribute(PA);
}
Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) {
AttrBuilder B;
return get(Context, B.addAlignmentAttr(Align));
}
Attribute Attribute::getWithStackAlignment(LLVMContext &Context,
uint64_t Align) {
AttrBuilder B;
return get(Context, B.addStackAlignmentAttr(Align));
}
//===----------------------------------------------------------------------===//
// Attribute Accessor Methods
//===----------------------------------------------------------------------===//
bool Attribute::hasAttribute(AttrKind Val) const {
return pImpl && pImpl->hasAttribute(Val);
}
bool Attribute::hasAttributes() const {
return pImpl && pImpl->hasAttributes();
}
/// This returns the alignment field of an attribute as a byte alignment value.
unsigned Attribute::getAlignment() const {
if (!hasAttribute(Attribute::Alignment))
return 0;
return pImpl->getAlignment();
}
/// This returns the stack alignment field of an attribute as a byte alignment
/// value.
unsigned Attribute::getStackAlignment() const {
if (!hasAttribute(Attribute::StackAlignment))
return 0;
return pImpl->getStackAlignment();
}
std::string Attribute::getAsString() const {
if (hasAttribute(Attribute::ZExt))
return "zeroext";
if (hasAttribute(Attribute::SExt))
return "signext";
if (hasAttribute(Attribute::NoReturn))
return "noreturn";
if (hasAttribute(Attribute::NoUnwind))
return "nounwind";
if (hasAttribute(Attribute::UWTable))
return "uwtable";
if (hasAttribute(Attribute::ReturnsTwice))
return "returns_twice";
if (hasAttribute(Attribute::InReg))
return "inreg";
if (hasAttribute(Attribute::NoAlias))
return "noalias";
if (hasAttribute(Attribute::NoCapture))
return "nocapture";
if (hasAttribute(Attribute::StructRet))
return "sret";
if (hasAttribute(Attribute::ByVal))
return "byval";
if (hasAttribute(Attribute::Nest))
return "nest";
if (hasAttribute(Attribute::ReadNone))
return "readnone";
if (hasAttribute(Attribute::ReadOnly))
return "readonly";
if (hasAttribute(Attribute::OptimizeForSize))
return "optsize";
if (hasAttribute(Attribute::NoInline))
return "noinline";
if (hasAttribute(Attribute::InlineHint))
return "inlinehint";
if (hasAttribute(Attribute::AlwaysInline))
return "alwaysinline";
if (hasAttribute(Attribute::StackProtect))
return "ssp";
if (hasAttribute(Attribute::StackProtectReq))
return "sspreq";
if (hasAttribute(Attribute::StackProtectStrong))
return "sspstrong";
if (hasAttribute(Attribute::NoRedZone))
return "noredzone";
if (hasAttribute(Attribute::NoImplicitFloat))
return "noimplicitfloat";
if (hasAttribute(Attribute::Naked))
return "naked";
if (hasAttribute(Attribute::NonLazyBind))
return "nonlazybind";
if (hasAttribute(Attribute::AddressSafety))
return "address_safety";
if (hasAttribute(Attribute::MinSize))
return "minsize";
if (hasAttribute(Attribute::StackAlignment)) {
std::string Result;
Result += "alignstack(";
Result += utostr(getStackAlignment());
Result += ")";
return Result;
}
if (hasAttribute(Attribute::Alignment)) {
std::string Result;
Result += "align ";
Result += utostr(getAlignment());
Result += "";
return Result;
}
if (hasAttribute(Attribute::NoDuplicate))
return "noduplicate";
llvm_unreachable("Unknown attribute");
}
bool Attribute::operator==(AttrKind K) const {
return pImpl && *pImpl == K;
}
bool Attribute::operator!=(AttrKind K) const {
return !(*this == K);
}
bool Attribute::operator<(Attribute A) const {
if (!pImpl && !A.pImpl) return false;
if (!pImpl) return true;
if (!A.pImpl) return false;
return *pImpl < *A.pImpl;
}
uint64_t Attribute::Raw() const {
return pImpl ? pImpl->Raw() : 0;
}
//===----------------------------------------------------------------------===//
// AttributeImpl Definition
//===----------------------------------------------------------------------===//
AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind kind)
: Context(C) {
Kind = ConstantInt::get(Type::getInt64Ty(C), kind);
}
AttributeImpl::AttributeImpl(LLVMContext &C, Attribute::AttrKind kind,
ArrayRef<Constant*> values)
: Context(C) {
Kind = ConstantInt::get(Type::getInt64Ty(C), kind);
Vals.reserve(values.size());
Vals.append(values.begin(), values.end());
}
AttributeImpl::AttributeImpl(LLVMContext &C, StringRef kind)
: Context(C) {
Kind = ConstantDataArray::getString(C, kind);
}
bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const {
return (Raw() & getAttrMask(A)) != 0;
}
bool AttributeImpl::hasAttributes() const {
return Raw() != 0;
}
uint64_t AttributeImpl::getAlignment() const {
uint64_t Mask = Raw() & getAttrMask(Attribute::Alignment);
return 1ULL << ((Mask >> 16) - 1);
}
uint64_t AttributeImpl::getStackAlignment() const {
uint64_t Mask = Raw() & getAttrMask(Attribute::StackAlignment);
return 1ULL << ((Mask >> 26) - 1);
}
bool AttributeImpl::operator==(Attribute::AttrKind kind) const {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Kind))
return CI->getZExtValue() == kind;
return false;
}
bool AttributeImpl::operator!=(Attribute::AttrKind kind) const {
return !(*this == kind);
}
bool AttributeImpl::operator==(StringRef kind) const {
if (ConstantDataArray *CDA = dyn_cast<ConstantDataArray>(Kind))
if (CDA->isString())
return CDA->getAsString() == kind;
return false;
}
bool AttributeImpl::operator!=(StringRef kind) const {
return !(*this == kind);
}
bool AttributeImpl::operator<(const AttributeImpl &AI) const {
if (!Kind && !AI.Kind) return false;
if (!Kind && AI.Kind) return true;
if (Kind && !AI.Kind) return false;
ConstantInt *ThisCI = dyn_cast<ConstantInt>(Kind);
ConstantInt *ThatCI = dyn_cast<ConstantInt>(AI.Kind);
ConstantDataArray *ThisCDA = dyn_cast<ConstantDataArray>(Kind);
ConstantDataArray *ThatCDA = dyn_cast<ConstantDataArray>(AI.Kind);
if (ThisCI && ThatCI)
return ThisCI->getZExtValue() < ThatCI->getZExtValue();
if (ThisCI && ThatCDA)
return true;
if (ThisCDA && ThatCI)
return false;
return ThisCDA->getAsString() < ThatCDA->getAsString();
}
uint64_t AttributeImpl::Raw() const {
// FIXME: Remove this.
return cast<ConstantInt>(Kind)->getZExtValue();
}
uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) {
// FIXME: Remove this.
switch (Val) {
case Attribute::EndAttrKinds:
case Attribute::AttrKindEmptyKey:
case Attribute::AttrKindTombstoneKey:
llvm_unreachable("Synthetic enumerators which should never get here");
case Attribute::None: return 0;
case Attribute::ZExt: return 1 << 0;
case Attribute::SExt: return 1 << 1;
case Attribute::NoReturn: return 1 << 2;
case Attribute::InReg: return 1 << 3;
case Attribute::StructRet: return 1 << 4;
case Attribute::NoUnwind: return 1 << 5;
case Attribute::NoAlias: return 1 << 6;
case Attribute::ByVal: return 1 << 7;
case Attribute::Nest: return 1 << 8;
case Attribute::ReadNone: return 1 << 9;
case Attribute::ReadOnly: return 1 << 10;
case Attribute::NoInline: return 1 << 11;
case Attribute::AlwaysInline: return 1 << 12;
case Attribute::OptimizeForSize: return 1 << 13;
case Attribute::StackProtect: return 1 << 14;
case Attribute::StackProtectReq: return 1 << 15;
case Attribute::Alignment: return 31 << 16;
case Attribute::NoCapture: return 1 << 21;
case Attribute::NoRedZone: return 1 << 22;
case Attribute::NoImplicitFloat: return 1 << 23;
case Attribute::Naked: return 1 << 24;
case Attribute::InlineHint: return 1 << 25;
case Attribute::StackAlignment: return 7 << 26;
case Attribute::ReturnsTwice: return 1 << 29;
case Attribute::UWTable: return 1 << 30;
case Attribute::NonLazyBind: return 1U << 31;
case Attribute::AddressSafety: return 1ULL << 32;
case Attribute::MinSize: return 1ULL << 33;
case Attribute::NoDuplicate: return 1ULL << 34;
case Attribute::StackProtectStrong: return 1ULL << 35;
}
llvm_unreachable("Unsupported attribute type");
}
//===----------------------------------------------------------------------===//
// AttributeSetNode Definition
//===----------------------------------------------------------------------===//
AttributeSetNode *AttributeSetNode::get(LLVMContext &C,
ArrayRef<Attribute> Attrs) {
if (Attrs.empty())
return 0;
// Otherwise, build a key to look up the existing attributes.
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end());
std::sort(SortedAttrs.begin(), SortedAttrs.end());
for (SmallVectorImpl<Attribute>::iterator I = SortedAttrs.begin(),
E = SortedAttrs.end(); I != E; ++I)
I->Profile(ID);
void *InsertPoint;
AttributeSetNode *PA =
pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then create a
// new one and insert it.
if (!PA) {
PA = new AttributeSetNode(SortedAttrs);
pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint);
}
// Return the AttributesListNode that we found or created.
return PA;
}
bool AttributeSetNode::hasAttribute(Attribute::AttrKind Kind) const {
for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
E = AttrList.end(); I != E; ++I)
if (I->hasAttribute(Kind))
return true;
return false;
}
unsigned AttributeSetNode::getAlignment() const {
for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
E = AttrList.end(); I != E; ++I)
if (I->hasAttribute(Attribute::Alignment))
return I->getAlignment();
return 0;
}
unsigned AttributeSetNode::getStackAlignment() const {
for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
E = AttrList.end(); I != E; ++I)
if (I->hasAttribute(Attribute::StackAlignment))
return I->getStackAlignment();
return 0;
}
std::string AttributeSetNode::getAsString() const {
std::string Str = "";
for (SmallVectorImpl<Attribute>::const_iterator I = AttrList.begin(),
E = AttrList.end(); I != E; ++I) {
if (I != AttrList.begin()) Str += " ";
Str += I->getAsString();
}
return Str;
}
//===----------------------------------------------------------------------===//
// AttributeSetImpl Definition
//===----------------------------------------------------------------------===//
uint64_t AttributeSetImpl::Raw(uint64_t Index) const {
for (unsigned I = 0, E = getNumAttributes(); I != E; ++I) {
if (getSlotIndex(I) != Index) continue;
const AttributeSetNode *ASN = AttrNodes[I].second;
AttrBuilder B;
for (AttributeSetNode::const_iterator II = ASN->begin(),
IE = ASN->end(); II != IE; ++II)
B.addAttributes(*II);
return B.Raw();
}
return 0;
}
//===----------------------------------------------------------------------===//
// AttributeSet Construction and Mutation Methods
//===----------------------------------------------------------------------===//
AttributeSet
AttributeSet::getImpl(LLVMContext &C,
ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs) {
LLVMContextImpl *pImpl = C.pImpl;
FoldingSetNodeID ID;
AttributeSetImpl::Profile(ID, Attrs);
void *InsertPoint;
AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint);
// If we didn't find any existing attributes of the same shape then
// create a new one and insert it.
if (!PA) {
PA = new AttributeSetImpl(C, Attrs);
pImpl->AttrsLists.InsertNode(PA, InsertPoint);
}
// Return the AttributesList that we found or created.
return AttributeSet(PA);
}
AttributeSet AttributeSet::get(LLVMContext &C,
ArrayRef<std::pair<unsigned, Attribute> > Attrs){
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttributeSet();
#ifndef NDEBUG
for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
assert((!i || Attrs[i-1].first <= Attrs[i].first) &&
"Misordered Attributes list!");
assert(Attrs[i].second.hasAttributes() &&
"Pointless attribute!");
}
#endif
// Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes
// list.
SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrPairVec;
for (ArrayRef<std::pair<unsigned, Attribute> >::iterator I = Attrs.begin(),
E = Attrs.end(); I != E; ) {
unsigned Index = I->first;
SmallVector<Attribute, 4> AttrVec;
while (I != E && I->first == Index) {
AttrVec.push_back(I->second);
++I;
}
AttrPairVec.push_back(std::make_pair(Index,
AttributeSetNode::get(C, AttrVec)));
}
return getImpl(C, AttrPairVec);
}
AttributeSet AttributeSet::get(LLVMContext &C,
ArrayRef<std::pair<unsigned,
AttributeSetNode*> > Attrs) {
// If there are no attributes then return a null AttributesList pointer.
if (Attrs.empty())
return AttributeSet();
return getImpl(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx, AttrBuilder &B) {
if (!B.hasAttributes())
return AttributeSet();
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (AttrBuilder::iterator I = B.begin(), E = B.end(); I != E; ++I) {
Attribute::AttrKind Kind = *I;
if (Kind == Attribute::Alignment)
Attrs.push_back(std::make_pair(Idx, Attribute::
getWithAlignment(C, B.getAlignment())));
else if (Kind == Attribute::StackAlignment)
Attrs.push_back(std::make_pair(Idx, Attribute::
getWithStackAlignment(C, B.getStackAlignment())));
else
Attrs.push_back(std::make_pair(Idx, Attribute::get(C, Kind)));
}
return get(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, unsigned Idx,
ArrayRef<Attribute::AttrKind> Kind) {
SmallVector<std::pair<unsigned, Attribute>, 8> Attrs;
for (ArrayRef<Attribute::AttrKind>::iterator I = Kind.begin(),
E = Kind.end(); I != E; ++I)
Attrs.push_back(std::make_pair(Idx, Attribute::get(C, *I)));
return get(C, Attrs);
}
AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<AttributeSet> Attrs) {
if (Attrs.empty()) return AttributeSet();
SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrNodeVec;
for (unsigned I = 0, E = Attrs.size(); I != E; ++I) {
AttributeSet AS = Attrs[I];
if (!AS.pImpl) continue;
AttrNodeVec.append(AS.pImpl->AttrNodes.begin(), AS.pImpl->AttrNodes.end());
}
return getImpl(C, AttrNodeVec);
}
AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Idx,
Attribute::AttrKind Attr) const {
return addAttributes(C, Idx, AttributeSet::get(C, Idx, Attr));
}
AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Idx,
AttributeSet Attrs) const {
if (!pImpl) return Attrs;
if (!Attrs.pImpl) return *this;
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment. For now, say
// we can't change a known alignment.
unsigned OldAlign = getParamAlignment(Idx);
unsigned NewAlign = Attrs.getParamAlignment(Idx);
assert((!OldAlign || !NewAlign || OldAlign == NewAlign) &&
"Attempt to change alignment!");
#endif
// Add the attribute slots before the one we're trying to add.
SmallVector<AttributeSet, 4> AttrSet;
uint64_t NumAttrs = pImpl->getNumAttributes();
AttributeSet AS;
uint64_t LastIndex = 0;
for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
if (getSlotIndex(I) >= Idx) {
if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++);
break;
}
LastIndex = I + 1;
AttrSet.push_back(getSlotAttributes(I));
}
// Now add the attribute into the correct slot. There may already be an
// AttributeSet there.
AttrBuilder B(AS, Idx);
for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Idx) {
for (AttributeSetImpl::const_iterator II = Attrs.pImpl->begin(I),
IE = Attrs.pImpl->end(I); II != IE; ++II)
B.addAttributes(*II);
break;
}
AttrSet.push_back(AttributeSet::get(C, Idx, B));
// Add the remaining attribute slots.
for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
AttrSet.push_back(getSlotAttributes(I));
return get(C, AttrSet);
}
AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Idx,
Attribute::AttrKind Attr) const {
return removeAttributes(C, Idx, AttributeSet::get(C, Idx, Attr));
}
AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Idx,
AttributeSet Attrs) const {
if (!pImpl) return AttributeSet();
if (!Attrs.pImpl) return *this;
#ifndef NDEBUG
// FIXME it is not obvious how this should work for alignment.
// For now, say we can't pass in alignment, which no current use does.
assert(!Attrs.hasAttribute(Idx, Attribute::Alignment) &&
"Attempt to change alignment!");
#endif
// Add the attribute slots before the one we're trying to add.
SmallVector<AttributeSet, 4> AttrSet;
uint64_t NumAttrs = pImpl->getNumAttributes();
AttributeSet AS;
uint64_t LastIndex = 0;
for (unsigned I = 0, E = NumAttrs; I != E; ++I) {
if (getSlotIndex(I) >= Idx) {
if (getSlotIndex(I) == Idx) AS = getSlotAttributes(LastIndex++);
break;
}
LastIndex = I + 1;
AttrSet.push_back(getSlotAttributes(I));
}
// Now add the attribute into the correct slot. There may already be an
// AttributeSet there.
AttrBuilder B(AS, Idx);
for (unsigned I = 0, E = Attrs.pImpl->getNumAttributes(); I != E; ++I)
if (Attrs.getSlotIndex(I) == Idx) {
for (AttributeSetImpl::const_iterator II = Attrs.pImpl->begin(I),
IE = Attrs.pImpl->end(I); II != IE; ++II)
B.removeAttributes(*II);
break;
}
AttrSet.push_back(AttributeSet::get(C, Idx, B));
// Add the remaining attribute slots.
for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I)
AttrSet.push_back(getSlotAttributes(I));
return get(C, AttrSet);
}
//===----------------------------------------------------------------------===//
// AttributeSet Accessor Methods
//===----------------------------------------------------------------------===//
AttributeSet AttributeSet::getParamAttributes(unsigned Idx) const {
return pImpl && hasAttributes(Idx) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(Idx, getAttributes(Idx)))) :
AttributeSet();
}
AttributeSet AttributeSet::getRetAttributes() const {
return pImpl && hasAttributes(ReturnIndex) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(ReturnIndex,
getAttributes(ReturnIndex)))) :
AttributeSet();
}
AttributeSet AttributeSet::getFnAttributes() const {
return pImpl && hasAttributes(FunctionIndex) ?
AttributeSet::get(pImpl->getContext(),
ArrayRef<std::pair<unsigned, AttributeSetNode*> >(
std::make_pair(FunctionIndex,
getAttributes(FunctionIndex)))) :
AttributeSet();
}
bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttribute(Kind) : false;
}
bool AttributeSet::hasAttributes(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->hasAttributes() : false;
}
/// \brief Return true if the specified attribute is set for at least one
/// parameter or for the return value.
bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr) const {
if (pImpl == 0) return false;
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
for (AttributeSetImpl::const_iterator II = pImpl->begin(I),
IE = pImpl->end(I); II != IE; ++II)
if (II->hasAttribute(Attr))
return true;
return false;
}
unsigned AttributeSet::getParamAlignment(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAlignment() : 0;
}
unsigned AttributeSet::getStackAlignment(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getStackAlignment() : 0;
}
std::string AttributeSet::getAsString(unsigned Index) const {
AttributeSetNode *ASN = getAttributes(Index);
return ASN ? ASN->getAsString() : std::string("");
}
/// \brief The attributes for the specified index are returned.
AttributeSetNode *AttributeSet::getAttributes(unsigned Idx) const {
if (!pImpl) return 0;
// Loop through to find the attribute node we want.
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I)
if (pImpl->getSlotIndex(I) == Idx)
return pImpl->getSlotNode(I);
return 0;
}
//===----------------------------------------------------------------------===//
// AttributeSet Introspection Methods
//===----------------------------------------------------------------------===//
/// \brief Return the number of slots used in this attribute list. This is the
/// number of arguments that have an attribute set on them (including the
/// function itself).
unsigned AttributeSet::getNumSlots() const {
return pImpl ? pImpl->getNumAttributes() : 0;
}
uint64_t AttributeSet::getSlotIndex(unsigned Slot) const {
assert(pImpl && Slot < pImpl->getNumAttributes() &&
"Slot # out of range!");
return pImpl->getSlotIndex(Slot);
}
AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const {
assert(pImpl && Slot < pImpl->getNumAttributes() &&
"Slot # out of range!");
return pImpl->getSlotAttributes(Slot);
}
uint64_t AttributeSet::Raw(unsigned Index) const {
// FIXME: Remove this.
return pImpl ? pImpl->Raw(Index) : 0;
}
void AttributeSet::dump() const {
dbgs() << "PAL[\n";
for (unsigned i = 0, e = getNumSlots(); i < e; ++i) {
uint64_t Index = getSlotIndex(i);
dbgs() << " { ";
if (Index == ~0U)
dbgs() << "~0U";
else
dbgs() << Index;
dbgs() << " => " << getAsString(Index) << " }\n";
}
dbgs() << "]\n";
}
//===----------------------------------------------------------------------===//
// AttrBuilder Method Implementations
//===----------------------------------------------------------------------===//
AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Idx)
: Alignment(0), StackAlignment(0) {
AttributeSetImpl *pImpl = AS.pImpl;
if (!pImpl) return;
AttrBuilder B;
for (unsigned I = 0, E = pImpl->getNumAttributes(); I != E; ++I) {
if (pImpl->getSlotIndex(I) != Idx) continue;
for (AttributeSetNode::const_iterator II = pImpl->begin(I),
IE = pImpl->end(I); II != IE; ++II)
B.addAttributes(*II);
break;
}
if (!B.hasAttributes()) return;
uint64_t Mask = B.Raw();
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (uint64_t A = (Mask & AttributeImpl::getAttrMask(I))) {
Attrs.insert(I);
if (I == Attribute::Alignment)
Alignment = 1ULL << ((A >> 16) - 1);
else if (I == Attribute::StackAlignment)
StackAlignment = 1ULL << ((A >> 26)-1);
}
}
}
void AttrBuilder::clear() {
Attrs.clear();
Alignment = StackAlignment = 0;
}
AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) {
Attrs.insert(Val);
return *this;
}
AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) {
Attrs.erase(Val);
if (Val == Attribute::Alignment)
Alignment = 0;
else if (Val == Attribute::StackAlignment)
StackAlignment = 0;
return *this;
}
AttrBuilder &AttrBuilder::addAttributes(Attribute Attr) {
uint64_t Mask = Attr.Raw();
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1))
if ((Mask & AttributeImpl::getAttrMask(I)) != 0)
Attrs.insert(I);
if (Attr.getAlignment())
Alignment = Attr.getAlignment();
if (Attr.getStackAlignment())
StackAlignment = Attr.getStackAlignment();
return *this;
}
AttrBuilder &AttrBuilder::removeAttributes(Attribute A) {
uint64_t Mask = A.Raw();
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (Mask & AttributeImpl::getAttrMask(I)) {
Attrs.erase(I);
if (I == Attribute::Alignment)
Alignment = 0;
else if (I == Attribute::StackAlignment)
StackAlignment = 0;
}
}
return *this;
}
AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) {
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x40000000 && "Alignment too large.");
Attrs.insert(Attribute::Alignment);
Alignment = Align;
return *this;
}
AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) {
// Default alignment, allow the target to define how to align it.
if (Align == 0) return *this;
assert(isPowerOf2_32(Align) && "Alignment must be a power of two.");
assert(Align <= 0x100 && "Alignment too large.");
Attrs.insert(Attribute::StackAlignment);
StackAlignment = Align;
return *this;
}
bool AttrBuilder::contains(Attribute::AttrKind A) const {
return Attrs.count(A);
}
bool AttrBuilder::hasAttributes() const {
return !Attrs.empty();
}
bool AttrBuilder::hasAttributes(const Attribute &A) const {
return Raw() & A.Raw();
}
bool AttrBuilder::hasAlignmentAttr() const {
return Alignment != 0;
}
bool AttrBuilder::operator==(const AttrBuilder &B) {
SmallVector<Attribute::AttrKind, 8> This(Attrs.begin(), Attrs.end());
SmallVector<Attribute::AttrKind, 8> That(B.Attrs.begin(), B.Attrs.end());
return This == That;
}
AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) {
if (!Val) return *this;
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) {
Attrs.insert(I);
if (I == Attribute::Alignment)
Alignment = 1ULL << ((A >> 16) - 1);
else if (I == Attribute::StackAlignment)
StackAlignment = 1ULL << ((A >> 26)-1);
}
}
return *this;
}
uint64_t AttrBuilder::Raw() const {
uint64_t Mask = 0;
for (DenseSet<Attribute::AttrKind>::const_iterator I = Attrs.begin(),
E = Attrs.end(); I != E; ++I) {
Attribute::AttrKind Kind = *I;
if (Kind == Attribute::Alignment)
Mask |= (Log2_32(Alignment) + 1) << 16;
else if (Kind == Attribute::StackAlignment)
Mask |= (Log2_32(StackAlignment) + 1) << 26;
else
Mask |= AttributeImpl::getAttrMask(Kind);
}
return Mask;
}
//===----------------------------------------------------------------------===//
// AttributeFuncs Function Defintions
//===----------------------------------------------------------------------===//
Attribute AttributeFuncs::typeIncompatible(Type *Ty) {
AttrBuilder Incompatible;
if (!Ty->isIntegerTy())
// Attribute that only apply to integers.
Incompatible.addAttribute(Attribute::SExt)
.addAttribute(Attribute::ZExt);
if (!Ty->isPointerTy())
// Attribute that only apply to pointers.
Incompatible.addAttribute(Attribute::ByVal)
.addAttribute(Attribute::Nest)
.addAttribute(Attribute::NoAlias)
.addAttribute(Attribute::NoCapture)
.addAttribute(Attribute::StructRet);
return Attribute::get(Ty->getContext(), Incompatible);
}
/// \brief This returns an integer containing an encoding of all the LLVM
/// attributes found in the given attribute bitset. Any change to this encoding
/// is a breaking change to bitcode compatibility.
/// N.B. This should be used only by the bitcode reader!
uint64_t AttributeFuncs::encodeLLVMAttributesForBitcode(AttributeSet Attrs,
unsigned Index) {
// FIXME: It doesn't make sense to store the alignment information as an
// expanded out value, we should store it as a log2 value. However, we can't
// just change that here without breaking bitcode compatibility. If this ever
// becomes a problem in practice, we should introduce new tag numbers in the
// bitcode file and have those tags use a more efficiently encoded alignment
// field.
// Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit
// log2 encoded value. Shift the bits above the alignment up by 11 bits.
uint64_t EncodedAttrs = Attrs.Raw(Index) & 0xffff;
if (Attrs.hasAttribute(Index, Attribute::Alignment))
EncodedAttrs |= Attrs.getParamAlignment(Index) << 16;
EncodedAttrs |= (Attrs.Raw(Index) & (0xffffULL << 21)) << 11;
return EncodedAttrs;
}
/// \brief This fills an AttrBuilder object with the LLVM attributes that have
/// been decoded from the given integer. This function must stay in sync with
/// 'encodeLLVMAttributesForBitcode'.
/// N.B. This should be used only by the bitcode reader!
void AttributeFuncs::decodeLLVMAttributesForBitcode(LLVMContext &C,
AttrBuilder &B,
uint64_t EncodedAttrs) {
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
// the bits above 31 down by 11 bits.
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
assert((!Alignment || isPowerOf2_32(Alignment)) &&
"Alignment must be a power of two.");
if (Alignment)
B.addAlignmentAttr(Alignment);
B.addRawValue(((EncodedAttrs & (0xffffULL << 32)) >> 11) |
(EncodedAttrs & 0xffff));
}