2010-02-24 07:06:50 +00:00
|
|
|
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the DAG Matcher optimizer.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2010-02-27 07:49:13 +00:00
|
|
|
#define DEBUG_TYPE "isel-opt"
|
2010-02-24 07:06:50 +00:00
|
|
|
#include "DAGISelMatcher.h"
|
2010-02-25 07:45:24 +00:00
|
|
|
#include "llvm/ADT/DenseMap.h"
|
2010-02-27 07:49:13 +00:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2010-02-25 07:45:24 +00:00
|
|
|
#include <vector>
|
2010-02-24 07:06:50 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
2010-02-27 06:22:57 +00:00
|
|
|
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
|
|
|
|
/// into single compound nodes like RecordChild.
|
2010-02-25 02:04:40 +00:00
|
|
|
static void ContractNodes(OwningPtr<Matcher> &MatcherPtr) {
|
2010-02-24 07:31:45 +00:00
|
|
|
// If we reached the end of the chain, we're done.
|
2010-02-25 02:04:40 +00:00
|
|
|
Matcher *N = MatcherPtr.get();
|
2010-02-24 07:31:45 +00:00
|
|
|
if (N == 0) return;
|
|
|
|
|
2010-02-25 19:00:39 +00:00
|
|
|
// If we have a scope node, walk down all of the children.
|
|
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
|
|
ContractNodes(Child);
|
|
|
|
Scope->resetChild(i, Child.take());
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
2010-02-24 07:31:45 +00:00
|
|
|
|
2010-02-24 19:52:48 +00:00
|
|
|
// If we found a movechild node with a node that comes in a 'foochild' form,
|
|
|
|
// transform it.
|
2010-02-25 02:04:40 +00:00
|
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
|
|
|
|
Matcher *New = 0;
|
|
|
|
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
|
|
|
|
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor());
|
2010-02-24 20:15:25 +00:00
|
|
|
|
2010-02-25 02:04:40 +00:00
|
|
|
if (CheckTypeMatcher *CT= dyn_cast<CheckTypeMatcher>(MC->getNext()))
|
|
|
|
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
|
2010-02-24 20:15:25 +00:00
|
|
|
|
|
|
|
if (New) {
|
|
|
|
// Insert the new node.
|
2010-02-25 01:56:48 +00:00
|
|
|
New->setNext(MatcherPtr.take());
|
|
|
|
MatcherPtr.reset(New);
|
2010-02-24 20:15:25 +00:00
|
|
|
// Remove the old one.
|
|
|
|
MC->setNext(MC->getNext()->takeNext());
|
2010-02-25 01:56:48 +00:00
|
|
|
return ContractNodes(MatcherPtr);
|
2010-02-24 19:52:48 +00:00
|
|
|
}
|
2010-02-24 07:31:45 +00:00
|
|
|
}
|
2010-02-24 19:52:48 +00:00
|
|
|
|
2010-02-28 02:31:26 +00:00
|
|
|
// Zap movechild -> moveparent.
|
2010-02-25 02:04:40 +00:00
|
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
|
|
|
|
if (MoveParentMatcher *MP =
|
|
|
|
dyn_cast<MoveParentMatcher>(MC->getNext())) {
|
2010-02-25 01:56:48 +00:00
|
|
|
MatcherPtr.reset(MP->takeNext());
|
|
|
|
return ContractNodes(MatcherPtr);
|
2010-02-24 19:52:48 +00:00
|
|
|
}
|
|
|
|
|
2010-02-28 02:31:26 +00:00
|
|
|
// Turn EmitNode->CompleteMatch into SelectNodeTo if we can.
|
|
|
|
if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
|
|
|
|
if (CompleteMatchMatcher *CM = cast<CompleteMatchMatcher>(EN->getNext())) {
|
|
|
|
(void)CM;
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2010-02-24 19:52:48 +00:00
|
|
|
ContractNodes(N->getNextPtr());
|
2010-02-24 07:31:45 +00:00
|
|
|
}
|
|
|
|
|
2010-02-27 06:22:57 +00:00
|
|
|
/// SinkPatternPredicates - Pattern predicates can be checked at any level of
|
|
|
|
/// the matching tree. The generator dumps them at the top level of the pattern
|
|
|
|
/// though, which prevents factoring from being able to see past them. This
|
|
|
|
/// optimization sinks them as far down into the pattern as possible.
|
|
|
|
///
|
|
|
|
/// Conceptually, we'd like to sink these predicates all the way to the last
|
|
|
|
/// matcher predicate in the series. However, it turns out that some
|
|
|
|
/// ComplexPatterns have side effects on the graph, so we really don't want to
|
|
|
|
/// run a the complex pattern if the pattern predicate will fail. For this
|
|
|
|
/// reason, we refuse to sink the pattern predicate past a ComplexPattern.
|
|
|
|
///
|
|
|
|
static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
|
|
|
|
// Recursively scan for a PatternPredicate.
|
|
|
|
// If we reached the end of the chain, we're done.
|
|
|
|
Matcher *N = MatcherPtr.get();
|
|
|
|
if (N == 0) return;
|
|
|
|
|
|
|
|
// Walk down all members of a scope node.
|
|
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
|
|
SinkPatternPredicates(Child);
|
|
|
|
Scope->resetChild(i, Child.take());
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this node isn't a CheckPatternPredicateMatcher we keep scanning until
|
|
|
|
// we find one.
|
|
|
|
CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
|
|
|
|
if (CPPM == 0)
|
|
|
|
return SinkPatternPredicates(N->getNextPtr());
|
|
|
|
|
|
|
|
// Ok, we found one, lets try to sink it. Check if we can sink it past the
|
|
|
|
// next node in the chain. If not, we won't be able to change anything and
|
|
|
|
// might as well bail.
|
|
|
|
if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Okay, we know we can sink it past at least one node. Unlink it from the
|
|
|
|
// chain and scan for the new insertion point.
|
|
|
|
MatcherPtr.take(); // Don't delete CPPM.
|
|
|
|
MatcherPtr.reset(CPPM->takeNext());
|
|
|
|
|
|
|
|
N = MatcherPtr.get();
|
|
|
|
while (N->getNext()->isSafeToReorderWithPatternPredicate())
|
|
|
|
N = N->getNext();
|
|
|
|
|
|
|
|
// At this point, we want to insert CPPM after N.
|
|
|
|
CPPM->setNext(N->takeNext());
|
|
|
|
N->setNext(CPPM);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// FactorNodes - Turn matches like this:
|
|
|
|
/// Scope
|
|
|
|
/// OPC_CheckType i32
|
|
|
|
/// ABC
|
|
|
|
/// OPC_CheckType i32
|
|
|
|
/// XYZ
|
|
|
|
/// into:
|
|
|
|
/// OPC_CheckType i32
|
|
|
|
/// Scope
|
|
|
|
/// ABC
|
|
|
|
/// XYZ
|
|
|
|
///
|
2010-02-25 02:04:40 +00:00
|
|
|
static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
|
2010-02-25 01:57:41 +00:00
|
|
|
// If we reached the end of the chain, we're done.
|
2010-02-25 02:04:40 +00:00
|
|
|
Matcher *N = MatcherPtr.get();
|
2010-02-25 01:57:41 +00:00
|
|
|
if (N == 0) return;
|
|
|
|
|
|
|
|
// If this is not a push node, just scan for one.
|
2010-02-25 19:00:39 +00:00
|
|
|
ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
|
|
|
|
if (Scope == 0)
|
2010-02-25 01:57:41 +00:00
|
|
|
return FactorNodes(N->getNextPtr());
|
|
|
|
|
2010-02-25 19:00:39 +00:00
|
|
|
// Okay, pull together the children of the scope node into a vector so we can
|
2010-02-25 07:45:24 +00:00
|
|
|
// inspect it more easily. While we're at it, bucket them up by the hash
|
|
|
|
// code of their first predicate.
|
2010-02-25 02:04:40 +00:00
|
|
|
SmallVector<Matcher*, 32> OptionsToMatch;
|
2010-02-25 01:57:41 +00:00
|
|
|
|
2010-02-25 19:00:39 +00:00
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
2010-02-25 07:45:24 +00:00
|
|
|
// Factor the subexpression.
|
2010-02-25 19:00:39 +00:00
|
|
|
OwningPtr<Matcher> Child(Scope->takeChild(i));
|
|
|
|
FactorNodes(Child);
|
|
|
|
|
2010-02-26 08:08:41 +00:00
|
|
|
if (Matcher *N = Child.take())
|
2010-02-25 19:00:39 +00:00
|
|
|
OptionsToMatch.push_back(N);
|
2010-02-25 07:45:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
SmallVector<Matcher*, 32> NewOptionsToMatch;
|
|
|
|
|
2010-02-26 08:08:41 +00:00
|
|
|
// Loop over options to match, merging neighboring patterns with identical
|
|
|
|
// starting nodes into a shared matcher.
|
2010-02-27 07:49:13 +00:00
|
|
|
for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
|
2010-02-25 07:45:24 +00:00
|
|
|
// Find the set of matchers that start with this node.
|
2010-02-27 07:49:13 +00:00
|
|
|
Matcher *Optn = OptionsToMatch[OptionIdx++];
|
|
|
|
|
|
|
|
if (OptionIdx == e) {
|
2010-02-26 08:08:41 +00:00
|
|
|
NewOptionsToMatch.push_back(Optn);
|
2010-02-26 07:36:37 +00:00
|
|
|
continue;
|
|
|
|
}
|
2010-02-25 07:45:24 +00:00
|
|
|
|
2010-02-27 07:49:13 +00:00
|
|
|
// See if the next option starts with the same matcher. If the two
|
|
|
|
// neighbors *do* start with the same matcher, we can factor the matcher out
|
|
|
|
// of at least these two patterns. See what the maximal set we can merge
|
|
|
|
// together is.
|
2010-02-25 07:45:24 +00:00
|
|
|
SmallVector<Matcher*, 8> EqualMatchers;
|
|
|
|
EqualMatchers.push_back(Optn);
|
|
|
|
|
2010-02-27 07:49:13 +00:00
|
|
|
// Factor all of the known-equal matchers after this one into the same
|
|
|
|
// group.
|
|
|
|
while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
|
|
|
|
EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
|
|
|
|
|
|
|
|
// If we found a non-equal matcher, see if it is contradictory with the
|
|
|
|
// current node. If so, we know that the ordering relation between the
|
|
|
|
// current sets of nodes and this node don't matter. Look past it to see if
|
|
|
|
// we can merge anything else into this matching group.
|
|
|
|
unsigned Scan = OptionIdx;
|
|
|
|
while (1) {
|
|
|
|
while (Scan != e && Optn->isContradictory(OptionsToMatch[Scan]))
|
|
|
|
++Scan;
|
|
|
|
|
|
|
|
// Ok, we found something that isn't known to be contradictory. If it is
|
|
|
|
// equal, we can merge it into the set of nodes to factor, if not, we have
|
|
|
|
// to cease factoring.
|
|
|
|
if (Scan == e || !Optn->isEqual(OptionsToMatch[Scan])) break;
|
|
|
|
|
|
|
|
// If is equal after all, add the option to EqualMatchers and remove it
|
|
|
|
// from OptionsToMatch.
|
|
|
|
EqualMatchers.push_back(OptionsToMatch[Scan]);
|
|
|
|
OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
|
|
|
|
--e;
|
|
|
|
}
|
|
|
|
|
2010-02-27 21:48:43 +00:00
|
|
|
if (Scan != e &&
|
|
|
|
// Don't print it's obvious nothing extra could be merged anyway.
|
|
|
|
Scan+1 != e) {
|
2010-02-27 08:11:15 +00:00
|
|
|
DEBUG(errs() << "Couldn't merge this:\n";
|
|
|
|
Optn->print(errs(), 4);
|
|
|
|
errs() << "into this:\n";
|
|
|
|
OptionsToMatch[Scan]->print(errs(), 4);
|
2010-02-27 08:13:23 +00:00
|
|
|
if (Scan+1 != e)
|
2010-02-27 08:11:15 +00:00
|
|
|
OptionsToMatch[Scan+1]->printOne(errs());
|
2010-02-27 08:13:23 +00:00
|
|
|
if (Scan+2 < e)
|
2010-02-27 08:11:15 +00:00
|
|
|
OptionsToMatch[Scan+2]->printOne(errs());
|
2010-02-27 07:49:13 +00:00
|
|
|
errs() << "\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we only found one option starting with this matcher, no factoring is
|
|
|
|
// possible.
|
|
|
|
if (EqualMatchers.size() == 1) {
|
|
|
|
NewOptionsToMatch.push_back(EqualMatchers[0]);
|
|
|
|
continue;
|
|
|
|
}
|
2010-02-25 07:45:24 +00:00
|
|
|
|
|
|
|
// Factor these checks by pulling the first node off each entry and
|
2010-02-26 07:36:37 +00:00
|
|
|
// discarding it. Take the first one off the first entry to reuse.
|
|
|
|
Matcher *Shared = Optn;
|
|
|
|
Optn = Optn->takeNext();
|
|
|
|
EqualMatchers[0] = Optn;
|
|
|
|
|
2010-02-26 08:08:41 +00:00
|
|
|
// Remove and delete the first node from the other matchers we're factoring.
|
|
|
|
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
|
|
|
|
Matcher *Tmp = EqualMatchers[i]->takeNext();
|
|
|
|
delete EqualMatchers[i];
|
|
|
|
EqualMatchers[i] = Tmp;
|
|
|
|
}
|
2010-02-26 07:36:37 +00:00
|
|
|
|
|
|
|
Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
|
|
|
|
|
|
|
|
// Recursively factor the newly created node.
|
|
|
|
FactorNodes(Shared->getNextPtr());
|
2010-02-25 07:45:24 +00:00
|
|
|
|
2010-02-26 07:36:37 +00:00
|
|
|
NewOptionsToMatch.push_back(Shared);
|
2010-02-25 07:45:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Reassemble a new Scope node.
|
2010-02-26 07:36:37 +00:00
|
|
|
assert(!NewOptionsToMatch.empty() && "where'd all our children go?");
|
|
|
|
if (NewOptionsToMatch.size() == 1)
|
|
|
|
MatcherPtr.reset(NewOptionsToMatch[0]);
|
|
|
|
else {
|
|
|
|
Scope->setNumChildren(NewOptionsToMatch.size());
|
|
|
|
for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
|
|
|
|
Scope->resetChild(i, NewOptionsToMatch[i]);
|
|
|
|
}
|
2010-02-25 01:57:41 +00:00
|
|
|
}
|
|
|
|
|
2010-02-25 02:04:40 +00:00
|
|
|
Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher) {
|
|
|
|
OwningPtr<Matcher> MatcherPtr(TheMatcher);
|
2010-02-24 19:52:48 +00:00
|
|
|
ContractNodes(MatcherPtr);
|
2010-02-27 06:22:57 +00:00
|
|
|
SinkPatternPredicates(MatcherPtr);
|
2010-02-25 01:57:41 +00:00
|
|
|
FactorNodes(MatcherPtr);
|
2010-02-24 07:31:45 +00:00
|
|
|
return MatcherPtr.take();
|
2010-02-24 07:06:50 +00:00
|
|
|
}
|