Remove dead code and data from VirtRegMap.

Most of this stuff was supporting the old deferred spill code insertion
mechanism.  Modern spillers just edit machine code in place.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144484 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jakob Stoklund Olesen 2011-11-13 01:02:04 +00:00
parent 929e4da68b
commit 3cb0b0edd9
2 changed files with 2 additions and 324 deletions

View File

@ -58,25 +58,14 @@ bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
TRI = mf.getTarget().getRegisterInfo();
MF = &mf;
ReMatId = MAX_STACK_SLOT+1;
LowSpillSlot = HighSpillSlot = NO_STACK_SLOT;
Virt2PhysMap.clear();
Virt2StackSlotMap.clear();
Virt2ReMatIdMap.clear();
Virt2SplitMap.clear();
Virt2SplitKillMap.clear();
ReMatMap.clear();
ImplicitDefed.clear();
SpillSlotToUsesMap.clear();
MI2VirtMap.clear();
SpillPt2VirtMap.clear();
RestorePt2VirtMap.clear();
EmergencySpillMap.clear();
EmergencySpillSlots.clear();
SpillSlotToUsesMap.resize(8);
ImplicitDefed.resize(MF->getRegInfo().getNumVirtRegs());
allocatableRCRegs.clear();
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
@ -93,11 +82,7 @@ void VirtRegMap::grow() {
unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
Virt2PhysMap.resize(NumRegs);
Virt2StackSlotMap.resize(NumRegs);
Virt2ReMatIdMap.resize(NumRegs);
Virt2SplitMap.resize(NumRegs);
Virt2SplitKillMap.resize(NumRegs);
ReMatMap.resize(NumRegs);
ImplicitDefed.resize(NumRegs);
}
unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
@ -144,29 +129,6 @@ void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
Virt2StackSlotMap[virtReg] = SS;
}
int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign re-mat id to already spilled register");
Virt2ReMatIdMap[virtReg] = ReMatId;
return ReMatId++;
}
void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
"attempt to assign re-mat id to already spilled register");
Virt2ReMatIdMap[virtReg] = id;
}
int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
std::map<const TargetRegisterClass*, int>::iterator I =
EmergencySpillSlots.find(RC);
if (I != EmergencySpillSlots.end())
return I->second;
return EmergencySpillSlots[RC] = createSpillSlot(RC);
}
void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
if (!MF->getFrameInfo()->isFixedObjectIndex(FI)) {
// If FI < LowSpillSlot, this stack reference was produced by
@ -180,25 +142,6 @@ void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
}
}
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
MachineInstr *NewMI, ModRef MRInfo) {
// Move previous memory references folded to new instruction.
MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
MI2VirtMap.erase(I++);
}
// add new memory reference
MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
}
void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
}
void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
@ -215,10 +158,6 @@ void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
&& "Invalid spill slot");
SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
}
MI2VirtMap.erase(MI);
SpillPt2VirtMap.erase(MI);
RestorePt2VirtMap.erase(MI);
EmergencySpillMap.erase(MI);
}
void VirtRegMap::rewrite(SlotIndexes *Indexes) {

View File

@ -70,68 +70,16 @@ namespace llvm {
/// at.
IndexedMap<int, VirtReg2IndexFunctor> Virt2StackSlotMap;
/// Virt2ReMatIdMap - This is virtual register to rematerialization id
/// mapping. Each spilled virtual register that should be remat'd has an
/// entry in it which corresponds to the remat id.
IndexedMap<int, VirtReg2IndexFunctor> Virt2ReMatIdMap;
/// Virt2SplitMap - This is virtual register to splitted virtual register
/// mapping.
IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2SplitMap;
/// Virt2SplitKillMap - This is splitted virtual register to its last use
/// (kill) index mapping.
IndexedMap<SlotIndex, VirtReg2IndexFunctor> Virt2SplitKillMap;
/// ReMatMap - This is virtual register to re-materialized instruction
/// mapping. Each virtual register whose definition is going to be
/// re-materialized has an entry in it.
IndexedMap<MachineInstr*, VirtReg2IndexFunctor> ReMatMap;
/// MI2VirtMap - This is MachineInstr to virtual register
/// mapping. In the case of memory spill code being folded into
/// instructions, we need to know which virtual register was
/// read/written by this instruction.
MI2VirtMapTy MI2VirtMap;
/// SpillPt2VirtMap - This records the virtual registers which should
/// be spilled right after the MachineInstr due to live interval
/// splitting.
std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >
SpillPt2VirtMap;
/// RestorePt2VirtMap - This records the virtual registers which should
/// be restored right before the MachineInstr due to live interval
/// splitting.
std::map<MachineInstr*, std::vector<unsigned> > RestorePt2VirtMap;
/// EmergencySpillMap - This records the physical registers that should
/// be spilled / restored around the MachineInstr since the register
/// allocator has run out of registers.
std::map<MachineInstr*, std::vector<unsigned> > EmergencySpillMap;
/// EmergencySpillSlots - This records emergency spill slots used to
/// spill physical registers when the register allocator runs out of
/// registers. Ideally only one stack slot is used per function per
/// register class.
std::map<const TargetRegisterClass*, int> EmergencySpillSlots;
/// ReMatId - Instead of assigning a stack slot to a to be rematerialized
/// virtual register, an unique id is being assigned. This keeps track of
/// the highest id used so far. Note, this starts at (1<<18) to avoid
/// conflicts with stack slot numbers.
int ReMatId;
/// LowSpillSlot, HighSpillSlot - Lowest and highest spill slot indexes.
int LowSpillSlot, HighSpillSlot;
/// SpillSlotToUsesMap - Records uses for each register spill slot.
SmallVector<SmallPtrSet<MachineInstr*, 4>, 8> SpillSlotToUsesMap;
/// ImplicitDefed - One bit for each virtual register. If set it indicates
/// the register is implicitly defined.
BitVector ImplicitDefed;
/// createSpillSlot - Allocate a spill slot for RC from MFI.
unsigned createSpillSlot(const TargetRegisterClass *RC);
@ -141,10 +89,7 @@ namespace llvm {
public:
static char ID;
VirtRegMap() : MachineFunctionPass(ID), Virt2PhysMap(NO_PHYS_REG),
Virt2StackSlotMap(NO_STACK_SLOT),
Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
Virt2SplitKillMap(SlotIndex()), ReMatMap(NULL),
ReMatId(MAX_STACK_SLOT+1),
Virt2StackSlotMap(NO_STACK_SLOT), Virt2SplitMap(0),
LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) { }
virtual bool runOnMachineFunction(MachineFunction &MF);
@ -232,8 +177,7 @@ namespace llvm {
/// @brief returns true if the specified virtual register is not
/// mapped to a stack slot or rematerialized.
bool isAssignedReg(unsigned virtReg) const {
if (getStackSlot(virtReg) == NO_STACK_SLOT &&
getReMatId(virtReg) == NO_STACK_SLOT)
if (getStackSlot(virtReg) == NO_STACK_SLOT)
return true;
// Split register can be assigned a physical register as well as a
// stack slot or remat id.
@ -247,13 +191,6 @@ namespace llvm {
return Virt2StackSlotMap[virtReg];
}
/// @brief returns the rematerialization id mapped to the specified virtual
/// register
int getReMatId(unsigned virtReg) const {
assert(TargetRegisterInfo::isVirtualRegister(virtReg));
return Virt2ReMatIdMap[virtReg];
}
/// @brief create a mapping for the specifed virtual register to
/// the next available stack slot
int assignVirt2StackSlot(unsigned virtReg);
@ -261,178 +198,6 @@ namespace llvm {
/// the specified stack slot
void assignVirt2StackSlot(unsigned virtReg, int frameIndex);
/// @brief assign an unique re-materialization id to the specified
/// virtual register.
int assignVirtReMatId(unsigned virtReg);
/// @brief assign an unique re-materialization id to the specified
/// virtual register.
void assignVirtReMatId(unsigned virtReg, int id);
/// @brief returns true if the specified virtual register is being
/// re-materialized.
bool isReMaterialized(unsigned virtReg) const {
return ReMatMap[virtReg] != NULL;
}
/// @brief returns the original machine instruction being re-issued
/// to re-materialize the specified virtual register.
MachineInstr *getReMaterializedMI(unsigned virtReg) const {
return ReMatMap[virtReg];
}
/// @brief records the specified virtual register will be
/// re-materialized and the original instruction which will be re-issed
/// for this purpose. If parameter all is true, then all uses of the
/// registers are rematerialized and it's safe to delete the definition.
void setVirtIsReMaterialized(unsigned virtReg, MachineInstr *def) {
ReMatMap[virtReg] = def;
}
/// @brief record the last use (kill) of a split virtual register.
void addKillPoint(unsigned virtReg, SlotIndex index) {
Virt2SplitKillMap[virtReg] = index;
}
SlotIndex getKillPoint(unsigned virtReg) const {
return Virt2SplitKillMap[virtReg];
}
/// @brief remove the last use (kill) of a split virtual register.
void removeKillPoint(unsigned virtReg) {
Virt2SplitKillMap[virtReg] = SlotIndex();
}
/// @brief returns true if the specified MachineInstr is a spill point.
bool isSpillPt(MachineInstr *Pt) const {
return SpillPt2VirtMap.find(Pt) != SpillPt2VirtMap.end();
}
/// @brief returns the virtual registers that should be spilled due to
/// splitting right after the specified MachineInstr.
std::vector<std::pair<unsigned,bool> > &getSpillPtSpills(MachineInstr *Pt) {
return SpillPt2VirtMap[Pt];
}
/// @brief records the specified MachineInstr as a spill point for virtReg.
void addSpillPoint(unsigned virtReg, bool isKill, MachineInstr *Pt) {
std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
I = SpillPt2VirtMap.find(Pt);
if (I != SpillPt2VirtMap.end())
I->second.push_back(std::make_pair(virtReg, isKill));
else {
std::vector<std::pair<unsigned,bool> > Virts;
Virts.push_back(std::make_pair(virtReg, isKill));
SpillPt2VirtMap.insert(std::make_pair(Pt, Virts));
}
}
/// @brief - transfer spill point information from one instruction to
/// another.
void transferSpillPts(MachineInstr *Old, MachineInstr *New) {
std::map<MachineInstr*, std::vector<std::pair<unsigned,bool> > >::iterator
I = SpillPt2VirtMap.find(Old);
if (I == SpillPt2VirtMap.end())
return;
while (!I->second.empty()) {
unsigned virtReg = I->second.back().first;
bool isKill = I->second.back().second;
I->second.pop_back();
addSpillPoint(virtReg, isKill, New);
}
SpillPt2VirtMap.erase(I);
}
/// @brief returns true if the specified MachineInstr is a restore point.
bool isRestorePt(MachineInstr *Pt) const {
return RestorePt2VirtMap.find(Pt) != RestorePt2VirtMap.end();
}
/// @brief returns the virtual registers that should be restoreed due to
/// splitting right after the specified MachineInstr.
std::vector<unsigned> &getRestorePtRestores(MachineInstr *Pt) {
return RestorePt2VirtMap[Pt];
}
/// @brief records the specified MachineInstr as a restore point for virtReg.
void addRestorePoint(unsigned virtReg, MachineInstr *Pt) {
std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
RestorePt2VirtMap.find(Pt);
if (I != RestorePt2VirtMap.end())
I->second.push_back(virtReg);
else {
std::vector<unsigned> Virts;
Virts.push_back(virtReg);
RestorePt2VirtMap.insert(std::make_pair(Pt, Virts));
}
}
/// @brief - transfer restore point information from one instruction to
/// another.
void transferRestorePts(MachineInstr *Old, MachineInstr *New) {
std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
RestorePt2VirtMap.find(Old);
if (I == RestorePt2VirtMap.end())
return;
while (!I->second.empty()) {
unsigned virtReg = I->second.back();
I->second.pop_back();
addRestorePoint(virtReg, New);
}
RestorePt2VirtMap.erase(I);
}
/// @brief records that the specified physical register must be spilled
/// around the specified machine instr.
void addEmergencySpill(unsigned PhysReg, MachineInstr *MI) {
if (EmergencySpillMap.find(MI) != EmergencySpillMap.end())
EmergencySpillMap[MI].push_back(PhysReg);
else {
std::vector<unsigned> PhysRegs;
PhysRegs.push_back(PhysReg);
EmergencySpillMap.insert(std::make_pair(MI, PhysRegs));
}
}
/// @brief returns true if one or more physical registers must be spilled
/// around the specified instruction.
bool hasEmergencySpills(MachineInstr *MI) const {
return EmergencySpillMap.find(MI) != EmergencySpillMap.end();
}
/// @brief returns the physical registers to be spilled and restored around
/// the instruction.
std::vector<unsigned> &getEmergencySpills(MachineInstr *MI) {
return EmergencySpillMap[MI];
}
/// @brief - transfer emergency spill information from one instruction to
/// another.
void transferEmergencySpills(MachineInstr *Old, MachineInstr *New) {
std::map<MachineInstr*,std::vector<unsigned> >::iterator I =
EmergencySpillMap.find(Old);
if (I == EmergencySpillMap.end())
return;
while (!I->second.empty()) {
unsigned virtReg = I->second.back();
I->second.pop_back();
addEmergencySpill(virtReg, New);
}
EmergencySpillMap.erase(I);
}
/// @brief return or get a emergency spill slot for the register class.
int getEmergencySpillSlot(const TargetRegisterClass *RC);
/// @brief Return lowest spill slot index.
int getLowSpillSlot() const {
return LowSpillSlot;
}
/// @brief Return highest spill slot index.
int getHighSpillSlot() const {
return HighSpillSlot;
}
/// @brief Records a spill slot use.
void addSpillSlotUse(int FrameIndex, MachineInstr *MI);
@ -442,32 +207,6 @@ namespace llvm {
return !SpillSlotToUsesMap[FrameIndex-LowSpillSlot].empty();
}
/// @brief Mark the specified register as being implicitly defined.
void setIsImplicitlyDefined(unsigned VirtReg) {
ImplicitDefed.set(TargetRegisterInfo::virtReg2Index(VirtReg));
}
/// @brief Returns true if the virtual register is implicitly defined.
bool isImplicitlyDefined(unsigned VirtReg) const {
return ImplicitDefed[TargetRegisterInfo::virtReg2Index(VirtReg)];
}
/// @brief Updates information about the specified virtual register's value
/// folded into newMI machine instruction.
void virtFolded(unsigned VirtReg, MachineInstr *OldMI, MachineInstr *NewMI,
ModRef MRInfo);
/// @brief Updates information about the specified virtual register's value
/// folded into the specified machine instruction.
void virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo);
/// @brief returns the virtual registers' values folded in memory
/// operands of this instruction
std::pair<MI2VirtMapTy::const_iterator, MI2VirtMapTy::const_iterator>
getFoldedVirts(MachineInstr* MI) const {
return MI2VirtMap.equal_range(MI);
}
/// RemoveMachineInstrFromMaps - MI is being erased, remove it from the
/// the folded instruction map and spill point map.
void RemoveMachineInstrFromMaps(MachineInstr *MI);