LPM: Stop threading Pass * through all of the loop utility APIs. NFC

A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:

- The APIs have access to pretty well any Pass state they want, so
  it's hard to tell what they may or may not do.

- Other APIs have copied these and pass around a `Pass *` even though
  they don't even use it. Some of these just hand a nullptr to the API
  since the callers don't even have a pass available.

- Passes in the new pass manager don't work like the current ones, so
  the APIs can't be used as is there.

Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255669 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Justin Bogner 2015-12-15 19:40:57 +00:00
parent ac785122ab
commit 591c3d8fe6
18 changed files with 162 additions and 173 deletions

View File

@ -293,16 +293,16 @@ private:
ConstantInt *StepValue;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
bool PreserveLCSSA);
/// \brief Simplify each loop in a loop nest recursively.
///
/// This takes a potentially un-simplified loop L (and its children) and turns
/// it into a simplified loop nest with preheaders and single backedges. It
/// will optionally update \c AliasAnalysis and \c ScalarEvolution analyses if
/// passed into it.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
ScalarEvolution *SE, AssumptionCache *AC);
/// it into a simplified loop nest with preheaders and single backedges. It will
/// update \c AliasAnalysis and \c ScalarEvolution analyses if they're non-null.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
AssumptionCache *AC, bool PreserveLCSSA);
/// \brief Put loop into LCSSA form.
///

View File

@ -25,7 +25,7 @@ class CastInst;
class DominatorTree;
class IVUsers;
class Loop;
class LPPassManager;
class LoopInfo;
class PHINode;
class ScalarEvolution;
@ -58,13 +58,13 @@ public:
/// simplifyUsersOfIV - Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
LPPassManager *LPM, SmallVectorImpl<WeakVH> &Dead,
LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
IVVisitor *V = nullptr);
/// SimplifyLoopIVs - Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
LPPassManager *LPM, SmallVectorImpl<WeakVH> &Dead);
LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead);
} // namespace llvm

View File

@ -21,20 +21,23 @@
namespace llvm {
class AssumptionCache;
class DominatorTree;
class Loop;
class LoopInfo;
class LPPassManager;
class MDNode;
class Pass;
class ScalarEvolution;
bool UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool AllowRuntime,
bool AllowExpensiveTripCount, unsigned TripMultiple,
LoopInfo *LI, Pass *PP, LPPassManager *LPM,
AssumptionCache *AC);
LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
AssumptionCache *AC, bool PreserveLCSSA, LPPassManager *LPM);
bool UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
bool AllowExpensiveTripCount, LoopInfo *LI,
LPPassManager *LPM);
ScalarEvolution *SE, DominatorTree *DT,
bool PreserveLCSSA);
MDNode *GetUnrollMetadata(MDNode *LoopID, StringRef Name);
}

View File

@ -112,6 +112,7 @@ namespace {
const DataLayout *DL;
DominatorTree *DT;
const TargetLibraryInfo *LibInfo;
bool PreserveLCSSA;
};
char PPCCTRLoops::ID = 0;
@ -174,6 +175,7 @@ bool PPCCTRLoops::runOnFunction(Function &F) {
DL = &F.getParent()->getDataLayout();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
LibInfo = TLIP ? &TLIP->getTLI() : nullptr;
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
bool MadeChange = false;
@ -537,7 +539,7 @@ bool PPCCTRLoops::convertToCTRLoop(Loop *L) {
// the CTR register because some such uses might be reordered by the
// selection DAG after the mtctr instruction).
if (!Preheader || mightUseCTR(TT, Preheader))
Preheader = InsertPreheaderForLoop(L, this);
Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
if (!Preheader)
return MadeChange;

View File

@ -84,8 +84,10 @@ namespace {
private:
PPCTargetMachine *TM;
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
bool PreserveLCSSA;
};
}
@ -144,6 +146,9 @@ static Value *GetPointerOperand(Value *MemI) {
bool PPCLoopPreIncPrep::runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
bool MadeChange = false;
@ -240,7 +245,7 @@ bool PPCLoopPreIncPrep::runOnLoop(Loop *L) {
// iteration space), insert a new preheader for the loop.
if (!LoopPredecessor ||
!LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
LoopPredecessor = InsertPreheaderForLoop(L, this);
LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
if (LoopPredecessor)
MadeChange = true;
}

View File

@ -129,7 +129,7 @@ private:
void handleFloatingPointIV(Loop *L, PHINode *PH);
void rewriteNonIntegerIVs(Loop *L);
void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
@ -1480,7 +1480,7 @@ public:
///
void IndVarSimplify::simplifyAndExtend(Loop *L,
SCEVExpander &Rewriter,
LPPassManager &LPM) {
LoopInfo *LI) {
SmallVector<WideIVInfo, 8> WideIVs;
SmallVector<PHINode*, 8> LoopPhis;
@ -1504,7 +1504,7 @@ void IndVarSimplify::simplifyAndExtend(Loop *L,
// Information about sign/zero extensions of CurrIV.
IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, DT, &LPM, DeadInsts, &Visitor);
Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
if (Visitor.WI.WidestNativeType) {
WideIVs.push_back(Visitor.WI);
@ -2120,7 +2120,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
// other expressions involving loop IVs have been evaluated. This helps SCEV
// set no-wrap flags before normalizing sign/zero extension.
Rewriter.disableCanonicalMode();
simplifyAndExtend(L, Rewriter, LPM);
simplifyAndExtend(L, Rewriter, LI);
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions

View File

@ -377,7 +377,7 @@ public:
/// \brief This performs the main chunk of the work of cloning the loops for
/// the partitions.
void cloneLoops(Pass *P) {
void cloneLoops() {
BasicBlock *OrigPH = L->getLoopPreheader();
// At this point the predecessor of the preheader is either the memcheck
// block or the top part of the original preheader.
@ -796,7 +796,7 @@ private:
// Create identical copies of the original loop for each partition and hook
// them up sequentially.
Partitions.cloneLoops(this);
Partitions.cloneLoops();
// Now, we remove the instruction from each loop that don't belong to that
// partition.

View File

@ -331,9 +331,9 @@ static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
class LoopInterchangeLegality {
public:
LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
LoopInterchange *Pass)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), CurrentPass(Pass),
InnerLoopHasReduction(false) {}
LoopInfo *LI, DominatorTree *DT, bool PreserveLCSSA)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
PreserveLCSSA(PreserveLCSSA), InnerLoopHasReduction(false) {}
/// Check if the loops can be interchanged.
bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
@ -357,9 +357,10 @@ private:
Loop *OuterLoop;
Loop *InnerLoop;
/// Scev analysis.
ScalarEvolution *SE;
LoopInterchange *CurrentPass;
LoopInfo *LI;
DominatorTree *DT;
bool PreserveLCSSA;
bool InnerLoopHasReduction;
};
@ -390,7 +391,7 @@ class LoopInterchangeTransform {
public:
LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
LoopInfo *LI, DominatorTree *DT,
LoopInterchange *Pass, BasicBlock *LoopNestExit,
BasicBlock *LoopNestExit,
bool InnerLoopContainsReductions)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
LoopExit(LoopNestExit),
@ -431,6 +432,7 @@ struct LoopInterchange : public FunctionPass {
LoopInfo *LI;
DependenceAnalysis *DA;
DominatorTree *DT;
bool PreserveLCSSA;
LoopInterchange()
: FunctionPass(ID), SE(nullptr), LI(nullptr), DA(nullptr), DT(nullptr) {
initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
@ -452,6 +454,8 @@ struct LoopInterchange : public FunctionPass {
DA = &getAnalysis<DependenceAnalysis>();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
// Build up a worklist of loop pairs to analyze.
SmallVector<LoopVector, 8> Worklist;
@ -574,7 +578,8 @@ struct LoopInterchange : public FunctionPass {
Loop *InnerLoop = LoopList[InnerLoopId];
Loop *OuterLoop = LoopList[OuterLoopId];
LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, this);
LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, LI, DT,
PreserveLCSSA);
if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n");
return false;
@ -586,7 +591,7 @@ struct LoopInterchange : public FunctionPass {
return false;
}
LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, this,
LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT,
LoopNestExit, LIL.hasInnerLoopReduction());
LIT.transform();
DEBUG(dbgs() << "Loops interchanged\n");
@ -867,12 +872,14 @@ bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() ||
isa<PHINode>(OuterLoopPreHeader->begin()) ||
!OuterLoopPreHeader->getUniquePredecessor()) {
OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, CurrentPass);
OuterLoopPreHeader =
InsertPreheaderForLoop(OuterLoop, DT, LI, PreserveLCSSA);
}
if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() ||
InnerLoopPreHeader == OuterLoop->getHeader()) {
InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, CurrentPass);
InnerLoopPreHeader =
InsertPreheaderForLoop(InnerLoop, DT, LI, PreserveLCSSA);
}
// TODO: The loops could not be interchanged due to current limitations in the

View File

@ -162,6 +162,7 @@ namespace {
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
DominatorTree *DT;
bool PreserveLCSSA;
typedef SmallVector<Instruction *, 16> SmallInstructionVector;
typedef SmallSet<Instruction *, 16> SmallInstructionSet;
@ -353,10 +354,11 @@ namespace {
struct DAGRootTracker {
DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV,
ScalarEvolution *SE, AliasAnalysis *AA,
TargetLibraryInfo *TLI,
TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI,
bool PreserveLCSSA,
DenseMap<Instruction *, int64_t> &IncrMap)
: Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), IV(IV),
IVToIncMap(IncrMap) {}
: Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI),
PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap) {}
/// Stage 1: Find all the DAG roots for the induction variable.
bool findRoots();
@ -402,6 +404,9 @@ namespace {
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
DominatorTree *DT;
LoopInfo *LI;
bool PreserveLCSSA;
// The loop induction variable.
Instruction *IV;
@ -1303,7 +1308,7 @@ void LoopReroll::DAGRootTracker::replace(const SCEV *IterCount) {
} else {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
Preheader = InsertPreheaderForLoop(L, Parent);
Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(),
Preheader->getTerminator());
@ -1444,7 +1449,8 @@ void LoopReroll::ReductionTracker::replaceSelected() {
bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
const SCEV *IterCount,
ReductionTracker &Reductions) {
DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, IVToIncMap);
DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA,
IVToIncMap);
if (!DAGRoots.findRoots())
return false;
@ -1474,6 +1480,7 @@ bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<

View File

@ -1776,18 +1776,16 @@ class LSRInstance {
void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
SmallVectorImpl<WeakVH> &DeadInsts,
Pass *P) const;
SmallVectorImpl<WeakVH> &DeadInsts) const;
void Rewrite(const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
SmallVectorImpl<WeakVH> &DeadInsts,
Pass *P) const;
void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Pass *P);
SmallVectorImpl<WeakVH> &DeadInsts) const;
void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
public:
LSRInstance(Loop *L, Pass *P);
LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
LoopInfo &LI, const TargetTransformInfo &TTI);
bool getChanged() const { return Changed; }
@ -4634,8 +4632,7 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
SmallVectorImpl<WeakVH> &DeadInsts,
Pass *P) const {
SmallVectorImpl<WeakVH> &DeadInsts) const {
DenseMap<BasicBlock *, Value *> Inserted;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
@ -4709,12 +4706,11 @@ void LSRInstance::RewriteForPHI(PHINode *PN,
void LSRInstance::Rewrite(const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
SmallVectorImpl<WeakVH> &DeadInsts,
Pass *P) const {
SmallVectorImpl<WeakVH> &DeadInsts) const {
// First, find an insertion point that dominates UserInst. For PHI nodes,
// find the nearest block which dominates all the relevant uses.
if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
} else {
Value *FullV =
Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
@ -4744,9 +4740,8 @@ void LSRInstance::Rewrite(const LSRFixup &LF,
/// Rewrite all the fixup locations with new values, following the chosen
/// solution.
void
LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Pass *P) {
void LSRInstance::ImplementSolution(
const SmallVectorImpl<const Formula *> &Solution) {
// Keep track of instructions we may have made dead, so that
// we can remove them after we are done working.
SmallVector<WeakVH, 16> DeadInsts;
@ -4768,7 +4763,7 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
// Expand the new value definitions and update the users.
for (const LSRFixup &Fixup : Fixups) {
Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
Changed = true;
}
@ -4784,14 +4779,11 @@ LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
}
LSRInstance::LSRInstance(Loop *L, Pass *P)
: IU(P->getAnalysis<IVUsers>()),
SE(P->getAnalysis<ScalarEvolutionWrapperPass>().getSE()),
DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()),
LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()),
TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
*L->getHeader()->getParent())),
L(L), Changed(false), IVIncInsertPos(nullptr) {
LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
DominatorTree &DT, LoopInfo &LI,
const TargetTransformInfo &TTI)
: IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
IVIncInsertPos(nullptr) {
// If LoopSimplify form is not available, stay out of trouble.
if (!L->isLoopSimplifyForm())
return;
@ -4882,7 +4874,7 @@ LSRInstance::LSRInstance(Loop *L, Pass *P)
#endif
// Now that we've decided what we want, make it so.
ImplementSolution(Solution, P);
ImplementSolution(Solution);
}
void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
@ -4998,10 +4990,16 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
if (skipOptnoneFunction(L))
return false;
auto &IU = getAnalysis<IVUsers>();
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
*L->getHeader()->getParent());
bool Changed = false;
// Run the main LSR transformation.
Changed |= LSRInstance(L, this).getChanged();
Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
// Remove any extra phis created by processing inner loops.
Changed |= DeleteDeadPHIs(L->getHeader());

View File

@ -898,6 +898,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
@ -1080,7 +1081,7 @@ bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
// Unroll the loop.
if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
TripMultiple, LI, this, &LPM, &AC))
TripMultiple, LI, SE, &DT, &AC, PreserveLCSSA, &LPM))
return false;
return true;

View File

@ -206,7 +206,7 @@ static bool needsStatepoint(const CallSite &CS) {
return true;
}
static Value *ReplaceWithStatepoint(const CallSite &CS, Pass *P);
static Value *ReplaceWithStatepoint(const CallSite &CS);
/// Returns true if this loop is known to contain a call safepoint which
/// must unconditionally execute on any iteration of the loop which returns
@ -704,7 +704,7 @@ bool PlaceSafepoints::runOnFunction(Function &F) {
Invoke->getParent());
}
Value *GCResult = ReplaceWithStatepoint(CS, nullptr);
Value *GCResult = ReplaceWithStatepoint(CS);
Results.push_back(GCResult);
}
assert(Results.size() == ParsePointNeeded.size());
@ -830,8 +830,7 @@ InsertSafepointPoll(Instruction *InsertBefore,
/// Replaces the given call site (Call or Invoke) with a gc.statepoint
/// intrinsic with an empty deoptimization arguments list. This does
/// NOT do explicit relocation for GC support.
static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */
Pass *P) {
static Value *ReplaceWithStatepoint(const CallSite &CS /* to replace */) {
assert(CS.getInstruction()->getModule() && "must be set");
// TODO: technically, a pass is not allowed to get functions from within a

View File

@ -1226,7 +1226,7 @@ static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
PartiallyConstructedSafepointRecord &result);
static void recomputeLiveInValues(
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
// TODO-PERF: reuse the original liveness, then simply run the dataflow
// again. The old values are still live and will help it stabilize quickly.
@ -1937,7 +1937,7 @@ static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
}
static void findLiveReferences(
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
GCPtrLivenessData OriginalLivenessData;
computeLiveInValues(DT, F, OriginalLivenessData);
@ -2276,7 +2276,8 @@ static void rematerializeLiveValues(CallSite CS,
}
}
static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
static bool insertParsePoints(Function &F, DominatorTree &DT,
TargetTransformInfo &TTI,
SmallVectorImpl<CallSite> &ToUpdate) {
#ifndef NDEBUG
// sanity check the input
@ -2333,7 +2334,7 @@ static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
// A) Identify all gc pointers which are statically live at the given call
// site.
findLiveReferences(F, DT, P, ToUpdate, Records);
findLiveReferences(F, DT, ToUpdate, Records);
// B) Find the base pointers for each live pointer
/* scope for caching */ {
@ -2375,7 +2376,7 @@ static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
// By selecting base pointers, we've effectively inserted new uses. Thus, we
// need to rerun liveness. We may *also* have inserted new defs, but that's
// not the key issue.
recomputeLiveInValues(F, DT, P, ToUpdate, Records);
recomputeLiveInValues(F, DT, ToUpdate, Records);
if (PrintBasePointers) {
for (auto &Info : Records) {
@ -2406,9 +2407,6 @@ static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
// In order to reduce live set of statepoint we might choose to rematerialize
// some values instead of relocating them. This is purely an optimization and
// does not influence correctness.
TargetTransformInfo &TTI =
P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
for (size_t i = 0; i < Records.size(); i++)
rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
@ -2596,6 +2594,8 @@ bool RewriteStatepointsForGC::runOnFunction(Function &F) {
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto NeedsRewrite = [](Instruction &I) {
if (UseDeoptBundles) {
@ -2676,7 +2676,7 @@ bool RewriteStatepointsForGC::runOnFunction(Function &F) {
}
}
MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
return MadeChange;
}

View File

@ -28,12 +28,11 @@ class FlattenCFGOpt {
AliasAnalysis *AA;
/// \brief Use parallel-and or parallel-or to generate conditions for
/// conditional branches.
bool FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder,
Pass *P = nullptr);
bool FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder);
/// \brief If \param BB is the merge block of an if-region, attempt to merge
/// the if-region with an adjacent if-region upstream if two if-regions
/// contain identical instructions.
bool MergeIfRegion(BasicBlock *BB, IRBuilder<> &Builder, Pass *P = nullptr);
bool MergeIfRegion(BasicBlock *BB, IRBuilder<> &Builder);
/// \brief Compare a pair of blocks: \p Block1 and \p Block2, which
/// are from two if-regions whose entry blocks are \p Head1 and \p
/// Head2. \returns true if \p Block1 and \p Block2 contain identical
@ -122,8 +121,7 @@ public:
/// its predecessor. In Case 2, \param BB (BB3) only has conditional branches
/// as its predecessors.
///
bool FlattenCFGOpt::FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder,
Pass *P) {
bool FlattenCFGOpt::FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder) {
PHINode *PHI = dyn_cast<PHINode>(BB->begin());
if (PHI)
return false; // For simplicity, avoid cases containing PHI nodes.
@ -387,8 +385,7 @@ bool FlattenCFGOpt::CompareIfRegionBlock(BasicBlock *Head1, BasicBlock *Head2,
/// if (a || b)
/// statement;
///
bool FlattenCFGOpt::MergeIfRegion(BasicBlock *BB, IRBuilder<> &Builder,
Pass *P) {
bool FlattenCFGOpt::MergeIfRegion(BasicBlock *BB, IRBuilder<> &Builder) {
BasicBlock *IfTrue2, *IfFalse2;
Value *IfCond2 = GetIfCondition(BB, IfTrue2, IfFalse2);
Instruction *CInst2 = dyn_cast_or_null<Instruction>(IfCond2);

View File

@ -114,16 +114,10 @@ static void placeSplitBlockCarefully(BasicBlock *NewBB,
/// preheader, this method is called to insert one. This method has two phases:
/// preheader insertion and analysis updating.
///
BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
LoopInfo *LI, bool PreserveLCSSA) {
BasicBlock *Header = L->getHeader();
// Get analyses that we try to update.
auto *DTWP = PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *LIWP = PP->getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
// Compute the set of predecessors of the loop that are not in the loop.
SmallVector<BasicBlock*, 8> OutsideBlocks;
for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
@ -163,7 +157,7 @@ BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
/// the loop.
static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
DominatorTree *DT, LoopInfo *LI,
Pass *PP) {
bool PreserveLCSSA) {
SmallVector<BasicBlock*, 8> LoopBlocks;
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
BasicBlock *P = *I;
@ -178,8 +172,6 @@ static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
BasicBlock *NewExitBB = nullptr;
bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
PreserveLCSSA);
if (!NewExitBB)
@ -255,7 +247,7 @@ static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
///
static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, Pass *PP,
ScalarEvolution *SE, bool PreserveLCSSA,
AssumptionCache *AC) {
// Don't try to separate loops without a preheader.
if (!Preheader)
@ -289,8 +281,6 @@ static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
if (SE)
SE->forgetLoop(L);
bool PreserveLCSSA = PP->mustPreserveAnalysisID(LCSSAID);
BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
DT, LI, PreserveLCSSA);
@ -470,15 +460,10 @@ static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
}
/// \brief Simplify one loop and queue further loops for simplification.
///
/// FIXME: Currently this accepts both lots of analyses that it uses and a raw
/// Pass pointer. The Pass pointer is used by numerous utilities to update
/// specific analyses. Rather than a pass it would be much cleaner and more
/// explicit if they accepted the analysis directly and then updated it.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, Pass *PP,
AssumptionCache *AC) {
ScalarEvolution *SE, AssumptionCache *AC,
bool PreserveLCSSA) {
bool Changed = false;
ReprocessLoop:
@ -544,7 +529,7 @@ ReprocessLoop:
// Does the loop already have a preheader? If so, don't insert one.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
Preheader = InsertPreheaderForLoop(L, PP);
Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
if (Preheader) {
++NumInserted;
Changed = true;
@ -568,7 +553,7 @@ ReprocessLoop:
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
// allowed.
if (!L->contains(*PI)) {
if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PP)) {
if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) {
++NumInserted;
Changed = true;
}
@ -584,7 +569,8 @@ ReprocessLoop:
// this for loops with a giant number of backedges, just factor them into a
// common backedge instead.
if (L->getNumBackEdges() < 8) {
if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, PP, AC)) {
if (Loop *OuterL =
separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
++NumNested;
// Enqueue the outer loop as it should be processed next in our
// depth-first nest walk.
@ -714,8 +700,9 @@ ReprocessLoop:
return Changed;
}
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
ScalarEvolution *SE, AssumptionCache *AC) {
bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, AssumptionCache *AC,
bool PreserveLCSSA) {
bool Changed = false;
// Worklist maintains our depth-first queue of loops in this nest to process.
@ -731,8 +718,8 @@ bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
}
while (!Worklist.empty())
Changed |=
simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, PP, AC);
Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
AC, PreserveLCSSA);
return Changed;
}
@ -801,10 +788,11 @@ bool LoopSimplify::runOnFunction(Function &F) {
auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
SE = SEWP ? &SEWP->getSE() : nullptr;
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
// Simplify each loop nest in the function.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Changed |= simplifyLoop(*I, DT, LI, this, SE, AC);
Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
return Changed;
}

View File

@ -73,7 +73,7 @@ static inline void RemapInstruction(Instruction *I,
/// of loops that have already been forgotten to prevent redundant, expensive
/// calls to ScalarEvolution::forgetLoop. Returns the new combined block.
static BasicBlock *
FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, ScalarEvolution *SE,
SmallPtrSetImpl<Loop *> &ForgottenLoops) {
// Merge basic blocks into their predecessor if there is only one distinct
// pred, and if there is only one distinct successor of the predecessor, and
@ -109,13 +109,10 @@ FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
// Erase basic block from the function...
// ScalarEvolution holds references to loop exit blocks.
if (LPM) {
if (auto *SEWP =
LPM->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>()) {
if (Loop *L = LI->getLoopFor(BB)) {
if (ForgottenLoops.insert(L).second)
SEWP->getSE().forgetLoop(L);
}
if (SE) {
if (Loop *L = LI->getLoopFor(BB)) {
if (ForgottenLoops.insert(L).second)
SE->forgetLoop(L);
}
}
LI->removeBlock(BB);
@ -159,12 +156,13 @@ FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM,
/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
/// removed from the LoopPassManager as well. LPM can also be NULL.
///
/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
/// available from the Pass it must also preserve those analyses.
/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
/// DominatorTree if they are non-null.
bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
bool AllowRuntime, bool AllowExpensiveTripCount,
unsigned TripMultiple, LoopInfo *LI, Pass *PP,
LPPassManager *LPM, AssumptionCache *AC) {
unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
DominatorTree *DT, AssumptionCache *AC,
bool PreserveLCSSA, LPPassManager *LPM) {
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
@ -234,14 +232,12 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
if (RuntimeTripCount &&
!UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, LPM))
!UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT,
PreserveLCSSA))
return false;
// Notify ScalarEvolution that the loop will be substantially changed,
// if not outright eliminated.
auto *SEWP =
PP ? PP->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>() : nullptr;
ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
if (SE)
SE->forgetLoop(L);
@ -482,7 +478,7 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
if (Term->isUnconditional()) {
BasicBlock *Dest = Term->getSuccessor(0);
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM,
if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, SE,
ForgottenLoops))
std::replace(Latches.begin(), Latches.end(), Dest, Fold);
}
@ -492,29 +488,24 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// whole function's cache.
AC->clear();
DominatorTree *DT = nullptr;
if (PP) {
// FIXME: Reconstruct dom info, because it is not preserved properly.
// Incrementally updating domtree after loop unrolling would be easy.
if (DominatorTreeWrapperPass *DTWP =
PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
DT = &DTWP->getDomTree();
DT->recalculate(*L->getHeader()->getParent());
}
// FIXME: Reconstruct dom info, because it is not preserved properly.
// Incrementally updating domtree after loop unrolling would be easy.
if (DT)
DT->recalculate(*L->getHeader()->getParent());
// Simplify any new induction variables in the partially unrolled loop.
if (SE && !CompletelyUnroll) {
SmallVector<WeakVH, 16> DeadInsts;
simplifyLoopIVs(L, SE, DT, LPM, DeadInsts);
// Simplify any new induction variables in the partially unrolled loop.
if (SE && !CompletelyUnroll) {
SmallVector<WeakVH, 16> DeadInsts;
simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
// Aggressively clean up dead instructions that simplifyLoopIVs already
// identified. Any remaining should be cleaned up below.
while (!DeadInsts.empty())
if (Instruction *Inst =
dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
// Aggressively clean up dead instructions that simplifyLoopIVs already
// identified. Any remaining should be cleaned up below.
while (!DeadInsts.empty())
if (Instruction *Inst =
dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
// At this point, the code is well formed. We now do a quick sweep over the
// inserted code, doing constant propagation and dead code elimination as we
// go.
@ -546,11 +537,11 @@ bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
// to ensure subsequent analyses can rely on this form. We want to simplify
// at least one layer outside of the loop that was unrolled so that any
// changes to the parent loop exposed by the unrolling are considered.
if (PP && DT) {
if (DT) {
if (!OuterL && !CompletelyUnroll)
OuterL = L;
if (OuterL) {
bool Simplified = simplifyLoop(OuterL, DT, LI, PP, SE, AC);
bool Simplified = simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
// LCSSA must be performed on the outermost affected loop. The unrolled
// loop's last loop latch is guaranteed to be in the outermost loop after

View File

@ -63,7 +63,7 @@ static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
ValueToValueMapTy &VMap, DominatorTree *DT,
LoopInfo *LI, Pass *P) {
LoopInfo *LI, bool PreserveLCSSA) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
@ -128,7 +128,7 @@ static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
P->mustPreserveAnalysisID(LCSSAID));
PreserveLCSSA);
// Add the branch to the exit block (around the unrolled loop)
B.CreateCondBr(BrLoopExit, Exit, NewPH);
InsertPt->eraseFromParent();
@ -279,7 +279,8 @@ static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
bool AllowExpensiveTripCount, LoopInfo *LI,
LPPassManager *LPM) {
ScalarEvolution *SE, DominatorTree *DT,
bool PreserveLCSSA) {
// for now, only unroll loops that contain a single exit
if (!L->getExitingBlock())
return false;
@ -291,16 +292,12 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
// Use Scalar Evolution to compute the trip count. This allows more
// loops to be unrolled than relying on induction var simplification
if (!LPM)
if (!SE)
return false;
auto *SEWP = LPM->getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
if (!SEWP)
return false;
ScalarEvolution &SE = SEWP->getSE();
// Only unroll loops with a computable trip count and the trip count needs
// to be an int value (allowing a pointer type is a TODO item)
const SCEV *BECountSC = SE.getBackedgeTakenCount(L);
const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECountSC) ||
!BECountSC->getType()->isIntegerTy())
return false;
@ -309,13 +306,13 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
// Add 1 since the backedge count doesn't include the first loop iteration
const SCEV *TripCountSC =
SE.getAddExpr(BECountSC, SE.getConstant(BECountSC->getType(), 1));
SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
if (isa<SCEVCouldNotCompute>(TripCountSC))
return false;
BasicBlock *Header = L->getHeader();
const DataLayout &DL = Header->getModule()->getDataLayout();
SCEVExpander Expander(SE, DL, "loop-unroll");
SCEVExpander Expander(*SE, DL, "loop-unroll");
if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
return false;
@ -332,11 +329,7 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
// If this loop is nested, then the loop unroller changes the code in
// parent loop, so the Scalar Evolution pass needs to be run again
if (Loop *ParentLoop = L->getParentLoop())
SE.forgetLoop(ParentLoop);
// Grab analyses that we preserve.
auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
SE->forgetLoop(ParentLoop);
BasicBlock *PH = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
@ -416,7 +409,7 @@ bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
// PHI functions.
BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap, DT, LI,
LPM->getAsPass());
PreserveLCSSA);
NumRuntimeUnrolled++;
return true;
}

View File

@ -595,10 +595,8 @@ void IVVisitor::anchor() { }
/// Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
LPPassManager *LPM, SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
{
LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
IVVisitor *V) {
SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
SIV.simplifyUsers(CurrIV, V);
return SIV.hasChanged();
@ -607,10 +605,10 @@ bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
/// Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
LPPassManager *LPM, SmallVectorImpl<WeakVH> &Dead) {
LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) {
bool Changed = false;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LPM, Dead);
Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
}
return Changed;
}