Implement array indexing reverse engineering

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1339 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-11-26 16:57:31 +00:00
parent 69a86e4e23
commit a0fa588d77

View File

@ -14,6 +14,7 @@
#include "llvm/ConstPoolVals.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/Optimizations/DCE.h"
#include "llvm/Analysis/Expressions.h"
#include <map>
#include <algorithm>
@ -21,46 +22,159 @@
//#define DEBUG_EXPR_CONVERT 1
static inline const Type *getTy(const Value *V, ValueTypeCache &CT) {
ValueTypeCache::iterator I = CT.find(V);
if (I == CT.end()) return V->getType();
return I->second;
}
GetElementPtrInst *getAddToGEPResult(const Type *Ty, const Value *V) {
const StructType *StructTy = getPointedToStruct(Ty);
if (StructTy == 0) return 0; // Must be a pointer to a struct...
// Must be a constant unsigned offset value... get it now...
if (!isa<ConstPoolUInt>(V)) return 0;
unsigned Offset = cast<ConstPoolUInt>(V)->getValue();
// Check to make sure the offset is somewhat legitiment w.r.t the struct
// type...
if (Offset >= TD.getTypeSize(StructTy)) return 0;
// If we get this far, we have succeeded... TODO: We need to handle array
// indexing as well...
const StructLayout *SL = TD.getStructLayout(StructTy);
vector<ConstPoolVal*> Offsets;
unsigned ActualOffset = Offset;
const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets);
if (ActualOffset != Offset) return 0; // TODO: Handle Array indexing...
// Success! Return the GEP instruction, with a dummy first argument.
ConstPoolVal *Dummy = ConstPoolVal::getNullConstant(Ty);
return new GetElementPtrInst(Dummy, Offsets);
}
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
ValueTypeCache &ConvertedTypes);
static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
ValueMapCache &VMC);
// AllIndicesZero - Return true if all of the indices of the specified memory
// access instruction are zero, indicating an effectively nil offset to the
// pointer value.
//
static bool AllIndicesZero(const MemAccessInst *MAI) {
for (User::op_const_iterator S = MAI->idx_begin(), E = MAI->idx_end();
S != E; ++S)
if (!isa<ConstPoolVal>(*S) || !cast<ConstPoolVal>(*S)->isNullValue())
return false;
return true;
}
static unsigned getBaseTypeSize(const Type *Ty) {
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
if (ATy->isUnsized())
return getBaseTypeSize(ATy->getElementType());
return TD.getTypeSize(Ty);
}
// Peephole Malloc instructions: we take a look at the use chain of the
// malloc instruction, and try to find out if the following conditions hold:
// 1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
// 2. The only users of the malloc are cast & add instructions
// 3. Of the cast instructions, there is only one destination pointer type
// [RTy] where the size of the pointed to object is equal to the number
// of bytes allocated.
//
// If these conditions hold, we convert the malloc to allocate an [RTy]
// element. TODO: This comment is out of date WRT arrays
//
static bool MallocConvertableToType(MallocInst *MI, const Type *Ty,
ValueTypeCache &CTMap) {
if (!MI->isArrayAllocation() || // No array allocation?
!isa<PointerType>(Ty)) return false; // Malloc always returns pointers
// Deal with the type to allocate, not the pointer type...
Ty = cast<PointerType>(Ty)->getValueType();
// Analyze the number of bytes allocated...
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
// Must have a scale or offset to analyze it...
if (!Expr.Offset && !Expr.Scale) return false;
if (Expr.Offset && (Expr.Scale || Expr.Var)) {
// This is wierd, shouldn't happen, but if it does, I wanna know about it!
cerr << "LevelRaise.cpp: Crazy allocation detected!\n";
return false;
}
// Get the number of bytes allocated...
int SizeVal = getConstantValue(Expr.Offset ? Expr.Offset : Expr.Scale);
if (SizeVal <= 0) {
cerr << "malloc of a negative number???\n";
return false;
}
unsigned Size = (unsigned)SizeVal;
unsigned ReqTypeSize = getBaseTypeSize(Ty);
// Does the size of the allocated type match the number of bytes
// allocated?
//
if (ReqTypeSize == Size)
return true;
// If not, it's possible that an array of constant size is being allocated.
// In this case, the Size will be a multiple of the data size.
//
if (!Expr.Offset) return false; // Offset must be set, not scale...
#if 1
return false;
#else // THIS CAN ONLY BE RUN VERY LATE, after several passes to make sure
// things are adequately raised!
// See if the allocated amount is a multiple of the type size...
if (Size/ReqTypeSize*ReqTypeSize != Size)
return false; // Nope.
// Unfortunately things tend to be powers of two, so there may be
// many false hits. We don't want to optimistically assume that we
// have the right type on the first try, so scan the use list of the
// malloc instruction, looking for the cast to the biggest type...
//
for (Value::use_iterator I = MI->use_begin(), E = MI->use_end(); I != E; ++I)
if (CastInst *CI = dyn_cast<CastInst>(*I))
if (const PointerType *PT =
dyn_cast<PointerType>(CI->getOperand(0)->getType()))
if (getBaseTypeSize(PT->getValueType()) > ReqTypeSize)
return false; // We found a type bigger than this one!
return true;
#endif
}
static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
const string &Name, ValueMapCache &VMC){
BasicBlock *BB = MI->getParent();
BasicBlock::iterator It = BB->end();
// Analyze the number of bytes allocated...
analysis::ExprType Expr = analysis::ClassifyExpression(MI->getArraySize());
const PointerType *AllocTy = cast<PointerType>(Ty);
const Type *ElType = AllocTy->getValueType();
if (Expr.Var && !isa<ArrayType>(ElType)) {
ElType = ArrayType::get(AllocTy->getValueType());
AllocTy = PointerType::get(ElType);
}
// If the array size specifier is not an unsigned integer, insert a cast now.
if (Expr.Var && Expr.Var->getType() != Type::UIntTy) {
It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
CastInst *SizeCast = new CastInst(Expr.Var, Type::UIntTy);
It = BB->getInstList().insert(It, SizeCast)+1;
Expr.Var = SizeCast;
}
// Check to see if they are allocating a constant sized array of a type...
#if 0 // THIS CAN ONLY BE RUN VERY LATE
if (!Expr.Var) {
unsigned OffsetAmount = (unsigned)getConstantValue(Expr.Offset);
unsigned DataSize = TD.getTypeSize(ElType);
if (OffsetAmount > DataSize) // Allocate a sized array amount...
Expr.Var = ConstPoolUInt::get(Type::UIntTy, OffsetAmount/DataSize);
}
#endif
Instruction *NewI = new MallocInst(AllocTy, Expr.Var, Name);
if (AllocTy != Ty) { // Create a cast instruction to cast it to the correct ty
if (It == BB->end())
It = find(BB->getInstList().begin(), BB->getInstList().end(), MI);
// Insert the new malloc directly into the code ourselves
assert(It != BB->getInstList().end());
It = BB->getInstList().insert(It, NewI)+1;
// Return the cast as the value to use...
NewI = new CastInst(NewI, Ty);
}
return NewI;
}
// ExpressionConvertableToType - Return true if it is possible
bool ExpressionConvertableToType(Value *V, const Type *Ty,
@ -94,7 +208,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
case Instruction::Cast:
// We can convert the expr if the cast destination type is losslessly
// convertable to the requested type.
if (!losslessCastableTypes(Ty, I->getType())) return false;
if (!Ty->isLosslesslyConvertableTo(I->getType())) return false;
#if 1
// We also do not allow conversion of a cast that casts from a ptr to array
// of X to a *X. For example: cast [4 x %List *] * %val to %List * *
@ -105,7 +219,7 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
if (AT->getElementType() == DPT->getValueType())
return false;
#endif
return true;
break;
case Instruction::Add:
case Instruction::Sub:
@ -123,12 +237,10 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
if (LI->hasIndices()) {
if (LI->hasIndices() && !AllIndicesZero(LI)) {
// We can't convert a load expression if it has indices... unless they are
// all zero.
const vector<ConstPoolVal*> &CPV = LI->getIndices();
for (unsigned i = 0; i < CPV.size(); ++i)
if (!CPV[i]->isNullValue()) return false;
return false;
}
if (!ExpressionConvertableToType(LI->getPointerOperand(),
@ -144,6 +256,12 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
break;
}
case Instruction::Malloc:
if (!MallocConvertableToType(cast<MallocInst>(I), Ty, CTMap))
return false;
break;
#if 1
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
@ -162,19 +280,24 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
vector<ConstPoolVal*> Indices = GEP->getIndices();
vector<Value*> Indices = GEP->copyIndices();
const Type *BaseType = GEP->getPointerOperand()->getType();
const Type *ElTy = 0;
while (Indices.size() &&
while (!Indices.empty() && isa<ConstPoolUInt>(Indices.back()) &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
true);
if (ElTy == PTy->getValueType())
break; // Found a match!!
ElTy = 0;
}
if (ElTy) break;
return false; // No match, maybe next time.
}
#endif
default:
return false;
@ -184,11 +307,9 @@ bool ExpressionConvertableToType(Value *V, const Type *Ty,
// have this value converted. This makes use of the map to avoid infinite
// recursion.
//
if (isa<Instruction>(V)) {
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I)
if (!OperandConvertableToType(*I, V, Ty, CTMap))
return false;
}
for (Value::use_iterator It = I->use_begin(), E = I->use_end(); It != E; ++It)
if (!OperandConvertableToType(*It, I, Ty, CTMap))
return false;
return true;
}
@ -256,15 +377,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
case Instruction::Load: {
LoadInst *LI = cast<LoadInst>(I);
#ifndef NDEBUG
if (LI->hasIndices()) {
// We can't convert a load expression if it has indices... unless they are
// all zero.
const vector<ConstPoolVal*> &CPV = LI->getIndices();
for (unsigned i = 0; i < CPV.size(); ++i)
assert(CPV[i]->isNullValue() && "Load index not 0!");
}
#endif
assert(!LI->hasIndices() || AllIndicesZero(LI));
Res = new LoadInst(ConstPoolVal::getNullConstant(PointerType::get(Ty)),
Name);
VMC.ExprMap[I] = Res;
@ -293,6 +407,11 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
break;
}
case Instruction::Malloc: {
Res = ConvertMallocToType(cast<MallocInst>(I), Ty, Name, VMC);
break;
}
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
@ -309,11 +428,11 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
vector<ConstPoolVal*> Indices = GEP->getIndices();
vector<Value*> Indices = GEP->copyIndices();
const Type *BaseType = GEP->getPointerOperand()->getType();
const Type *PVTy = cast<PointerType>(Ty)->getValueType();
Res = 0;
while (Indices.size() &&
while (!Indices.empty() && isa<ConstPoolUInt>(Indices.back()) &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
@ -366,6 +485,8 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
cerr << "EXPR DELETING: " << (void*)I << " " << I;
#endif
BIL.remove(I);
VMC.OperandsMapped.erase(I);
VMC.ExprMap.erase(I);
delete I;
}
@ -374,15 +495,13 @@ Value *ConvertExpressionToType(Value *V, const Type *Ty, ValueMapCache &VMC) {
// RetValConvertableToType - Return true if it is possible
bool RetValConvertableToType(Value *V, const Type *Ty,
// ValueConvertableToType - Return true if it is possible
bool ValueConvertableToType(Value *V, const Type *Ty,
ValueTypeCache &ConvertedTypes) {
ValueTypeCache::iterator I = ConvertedTypes.find(V);
if (I != ConvertedTypes.end()) return I->second == Ty;
ConvertedTypes[V] = Ty;
assert(isa<Instruction>(V) && "Can't convert ret val of non instruction");
// It is safe to convert the specified value to the specified type IFF all of
// the uses of the value can be converted to accept the new typed value.
//
@ -405,8 +524,7 @@ bool RetValConvertableToType(Value *V, const Type *Ty,
//
static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
ValueTypeCache &CTMap) {
// TODO: IS THIS A BUG????
if (V->getType() == Ty) return true; // Already the right type?
if (V->getType() == Ty) return true; // Operand already the right type?
// Expression type must be holdable in a register.
if (!isFirstClassType(Ty))
@ -420,7 +538,7 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
assert(I->getOperand(0) == V);
// We can convert the expr if the cast destination type is losslessly
// convertable to the requested type.
if (!losslessCastableTypes(Ty, I->getOperand(0)->getType()))
if (!Ty->isLosslesslyConvertableTo(I->getOperand(0)->getType()))
return false;
#if 1
// We also do not allow conversion of a cast that casts from a ptr to array
@ -435,20 +553,24 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
return true;
case Instruction::Add:
if (V == I->getOperand(0) && isa<CastInst>(I->getOperand(1))) {
Instruction *GEP =
getAddToGEPResult(Ty, cast<CastInst>(I->getOperand(1))->getOperand(0));
if (GEP) { // If successful, this Add can be converted to a GEP.
const Type *RetTy = GEP->getType(); // Get the new type...
delete GEP; // We don't want the actual instruction yet...
if (V == I->getOperand(0) && isa<CastInst>(I->getOperand(1)) &&
isa<PointerType>(Ty)) {
Value *IndexVal = cast<CastInst>(I->getOperand(1))->getOperand(0);
vector<Value*> Indices;
if (const Type *ETy = ConvertableToGEP(Ty, IndexVal, Indices)) {
const Type *RetTy = PointerType::get(ETy);
// Only successful if we can convert this type to the required type
return RetValConvertableToType(I, RetTy, CTMap);
if (ValueConvertableToType(I, RetTy, CTMap)) {
CTMap[I] = RetTy;
return true;
}
}
}
// FALLTHROUGH
case Instruction::Sub: {
Value *OtherOp = I->getOperand((V == I->getOperand(0)) ? 1 : 0);
return RetValConvertableToType(I, Ty, CTMap) &&
return ValueConvertableToType(I, Ty, CTMap) &&
ExpressionConvertableToType(OtherOp, Ty, CTMap);
}
case Instruction::SetEQ:
@ -461,38 +583,35 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
// FALL THROUGH
case Instruction::Shl:
assert(I->getOperand(0) == V);
return RetValConvertableToType(I, Ty, CTMap);
return ValueConvertableToType(I, Ty, CTMap);
case Instruction::Load:
assert(I->getOperand(0) == V);
// Cannot convert the types of any subscripts...
if (I->getOperand(0) != V) return false;
if (const PointerType *PT = dyn_cast<PointerType>(Ty)) {
LoadInst *LI = cast<LoadInst>(I);
const Type *PVTy = PT->getValueType();
if (LI->hasIndices() || isa<ArrayType>(PVTy))
if (LI->hasIndices() && !AllIndicesZero(LI))
return false;
if (!isFirstClassType(PVTy)) {
// They could be loading the first element of a structure type...
if (const StructType *ST = dyn_cast<StructType>(PVTy)) {
unsigned Offset = 0; // No offset, get first leaf.
vector<ConstPoolVal*> Offsets; // Discarded...
const Type *Ty = getStructOffsetType(ST, Offset, Offsets, false);
assert(Offset == 0 && "Offset changed from zero???");
if (!isFirstClassType(Ty)) return false;
const Type *LoadedTy = PT->getValueType();
// See if the leaf type is compatible with the old return type...
if (TD.getTypeSize(Ty) != TD.getTypeSize(LI->getType()))
return false;
return RetValConvertableToType(LI, Ty, CTMap);
}
return false;
// They could be loading the first element of a composite type...
if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
unsigned Offset = 0; // No offset, get first leaf.
vector<Value*> Indices; // Discarded...
LoadedTy = getStructOffsetType(CT, Offset, Indices, false);
assert(Offset == 0 && "Offset changed from zero???");
}
if (TD.getTypeSize(PVTy) != TD.getTypeSize(LI->getType()))
if (!isFirstClassType(LoadedTy))
return false;
return RetValConvertableToType(LI, PVTy, CTMap);
if (TD.getTypeSize(LoadedTy) != TD.getTypeSize(LI->getType()))
return false;
return ValueConvertableToType(LI, LoadedTy, CTMap);
}
return false;
@ -521,53 +640,50 @@ static bool OperandConvertableToType(User *U, Value *V, const Type *Ty,
return false;
}
case Instruction::GetElementPtr:
// Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to
// anything that is a pointer type...
//
if (I->getType() != PointerType::get(Type::SByteTy) ||
I->getNumOperands() != 2 || V != I->getOperand(0) ||
I->getOperand(1)->getType() != Type::UIntTy || !isa<PointerType>(Ty))
return false;
return true;
case Instruction::PHINode: {
PHINode *PN = cast<PHINode>(I);
for (unsigned i = 0; i < PN->getNumIncomingValues(); ++i)
if (!ExpressionConvertableToType(PN->getIncomingValue(i), Ty, CTMap))
return false;
return RetValConvertableToType(PN, Ty, CTMap);
return ValueConvertableToType(PN, Ty, CTMap);
}
#if 0
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) return false;
case Instruction::Call: {
User::op_iterator OI = find(I->op_begin(), I->op_end(), V);
assert (OI != I->op_end() && "Not using value!");
unsigned OpNum = OI - I->op_begin();
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
if (OpNum == 0)
return false; // Can't convert method pointer type yet. FIXME
const PointerType *MPtr = cast<PointerType>(I->getOperand(0)->getType());
const MethodType *MTy = cast<MethodType>(MPtr->getValueType());
if (!MTy->isVarArg()) return false;
if ((OpNum-1) < MTy->getParamTypes().size())
return false; // It's not in the varargs section...
// If we get this far, we know the value is in the varargs section of the
// method! We can convert if we don't reinterpret the value...
//
vector<ConstPoolVal*> Indices = GEP->getIndices();
const Type *BaseType = GEP->getPointerOperand()->getType();
while (Indices.size() &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
const Type *ElTy = GetElementPtrInst::getIndexedType(BaseType, Indices,
true);
if (ElTy == PTy->getValueType())
return true; // Found a match!!
}
break; // No match, maybe next time.
return Ty->isLosslesslyConvertableTo(V->getType());
}
#endif
}
return false;
}
void ConvertUsersType(Value *V, Value *NewVal, ValueMapCache &VMC) {
void ConvertValueToNewType(Value *V, Value *NewVal, ValueMapCache &VMC) {
ValueHandle VH(VMC, V);
unsigned NumUses = V->use_size();
@ -616,12 +732,19 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
break;
case Instruction::Add:
if (OldVal == I->getOperand(0) && isa<CastInst>(I->getOperand(1))) {
Res = getAddToGEPResult(NewVal->getType(),
cast<CastInst>(I->getOperand(1))->getOperand(0));
if (Res) { // If successful, this Add should be converted to a GEP.
if (OldVal == I->getOperand(0) && isa<CastInst>(I->getOperand(1)) &&
isa<PointerType>(NewTy)) {
Value *IndexVal = cast<CastInst>(I->getOperand(1))->getOperand(0);
vector<Value*> Indices;
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
if (const Type *ETy = ConvertableToGEP(NewTy, IndexVal, Indices, &It)) {
// If successful, convert the add to a GEP
const Type *RetTy = PointerType::get(ETy);
// First operand is actually the given pointer...
Res->setOperand(0, NewVal);
Res = new GetElementPtrInst(NewVal, Indices);
assert(cast<PointerType>(Res->getType())->getValueType() == ETy &&
"ConvertableToGEP broken!");
break;
}
}
@ -651,19 +774,21 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
case Instruction::Load: {
assert(I->getOperand(0) == OldVal && isa<PointerType>(NewVal->getType()));
const Type *PVTy = cast<PointerType>(NewVal->getType())->getValueType();
if (!isFirstClassType(PVTy)) { // Must be an indirect load then...
assert(isa<StructType>(PVTy));
const Type *LoadedTy = cast<PointerType>(NewVal->getType())->getValueType();
vector<Value*> Indices;
if (const CompositeType *CT = dyn_cast<CompositeType>(LoadedTy)) {
unsigned Offset = 0; // No offset, get first leaf.
vector<ConstPoolVal*> Offsets; // Discarded...
const Type *Ty = getStructOffsetType(PVTy, Offset, Offsets, false);
Res = new LoadInst(NewVal, Offsets, Name);
} else {
Res = new LoadInst(NewVal, Name);
LoadedTy = getStructOffsetType(CT, Offset, Indices, false);
}
assert(isFirstClassType(LoadedTy));
Res = new LoadInst(NewVal, Indices, Name);
assert(isFirstClassType(Res->getType()) && "Load of structure or array!");
break;
}
case Instruction::Store: {
if (I->getOperand(0) == OldVal) { // Replace the source value
const PointerType *NewPT = PointerType::get(NewTy);
@ -679,6 +804,27 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
break;
}
case Instruction::GetElementPtr: {
// Convert a getelementptr [sbyte] * %reg111, uint 16 freely back to
// anything that is a pointer type...
//
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
// Insert a cast right before this instruction of the index value...
CastInst *CIdx = new CastInst(I->getOperand(1), NewTy);
It = BIL.insert(It, CIdx)+1;
// Insert an add right before this instruction
Instruction *AddInst = BinaryOperator::create(Instruction::Add, NewVal,
CIdx, Name);
It = BIL.insert(It, AddInst)+1;
// Finally, cast the result back to our previous type...
Res = new CastInst(AddInst, I->getType());
break;
}
case Instruction::PHINode: {
PHINode *OldPN = cast<PHINode>(I);
PHINode *NewPN = new PHINode(NewTy, Name);
@ -695,44 +841,17 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
break;
}
#if 0
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertable to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
// change the logical offset of the GEP, it is okay and fair to remove them.
// This can change this:
// %t1 = getelementptr %Hosp * %hosp, ubyte 4, ubyte 0 ; <%List **>
// %t2 = cast %List * * %t1 to %List *
// into
// %t2 = getelementptr %Hosp * %hosp, ubyte 4 ; <%List *>
//
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
case Instruction::Call: {
Value *Meth = I->getOperand(0);
vector<Value*> Params(I->op_begin()+1, I->op_end());
// Check to see if there are zero elements that we can remove from the
// index array. If there are, check to see if removing them causes us to
// get to the right type...
//
vector<ConstPoolVal*> Indices = GEP->getIndices();
const Type *BaseType = GEP->getPointerOperand()->getType();
const Type *PVTy = cast<PointerType>(Ty)->getValueType();
Res = 0;
while (Indices.size() &&
cast<ConstPoolUInt>(Indices.back())->getValue() == 0) {
Indices.pop_back();
if (GetElementPtrInst::getIndexedType(BaseType, Indices, true) == PVTy) {
if (Indices.size() == 0) {
Res = new CastInst(GEP->getPointerOperand(), BaseType); // NOOP
} else {
Res = new GetElementPtrInst(GEP->getPointerOperand(), Indices, Name);
}
break;
}
}
assert(Res && "Didn't find match!");
break; // No match, maybe next time.
vector<Value*>::iterator OI = find(Params.begin(), Params.end(), OldVal);
assert (OI != Params.end() && "Not using value!");
*OI = NewVal;
Res = new CallInst(Meth, Params, Name);
break;
}
#endif
default:
assert(0 && "Expression convertable, but don't know how to convert?");
return;
@ -751,7 +870,7 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
VMC.ExprMap[I] = Res;
if (I->getType() != Res->getType())
ConvertUsersType(I, Res, VMC);
ConvertValueToNewType(I, Res, VMC);
else {
for (unsigned It = 0; It < I->use_size(); ) {
User *Use = *(I->use_begin()+It);
@ -770,6 +889,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
cerr << "DELETING: " << (void*)I << " " << I;
#endif
BIL.remove(I);
VMC.OperandsMapped.erase(I);
VMC.ExprMap.erase(I);
delete I;
} else {
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
@ -780,8 +901,8 @@ static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
}
ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V) : Instruction(Type::VoidTy, UserOp1, ""),
Cache(VMC) {
ValueHandle::ValueHandle(ValueMapCache &VMC, Value *V)
: Instruction(Type::VoidTy, UserOp1, ""), Cache(VMC) {
#ifdef DEBUG_EXPR_CONVERT
cerr << "VH AQUIRING: " << (void*)V << " " << V;
#endif